IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v32y2017i1d10.1007_s00180-016-0668-0.html
   My bibliography  Save this article

Non-parametric clustering over user features and latent behavioral functions with dual-view mixture models

Author

Listed:
  • Alberto Lumbreras

    (Technicolor)

  • Julien Velcin

    (Université de Lyon)

  • Marie Guégan

    (Technicolor)

  • Bertrand Jouve

    (Université de Toulouse
    Université de Toulouse)

Abstract

We present a dual-view mixture model to cluster users based on their features and latent behavioral functions. Every component of the mixture model represents a probability density over a feature view for observed user attributes and a behavior view for latent behavioral functions that are indirectly observed through user actions or behaviors. Our task is to infer the groups of users as well as their latent behavioral functions. We also propose a non-parametric version based on a Dirichlet Process to automatically infer the number of clusters. We test the properties and performance of the model on a synthetic dataset that represents the participation of users in the threads of an online forum. Experiments show that dual-view models outperform single-view ones when one of the views lacks information.

Suggested Citation

  • Alberto Lumbreras & Julien Velcin & Marie Guégan & Bertrand Jouve, 2017. "Non-parametric clustering over user features and latent behavioral functions with dual-view mixture models," Computational Statistics, Springer, vol. 32(1), pages 145-177, March.
  • Handle: RePEc:spr:compst:v:32:y:2017:i:1:d:10.1007_s00180-016-0668-0
    DOI: 10.1007/s00180-016-0668-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-016-0668-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-016-0668-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. İsmail Güzel & Atabey Kaygun, 2022. "A new non-archimedean metric on persistent homology," Computational Statistics, Springer, vol. 37(4), pages 1963-1983, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, W. K. & Yang, Z. H. & Hou, S. H. & Leung, P. K., 2002. "Non-uniform random variate generation by the vertical strip method," European Journal of Operational Research, Elsevier, vol. 142(3), pages 595-609, November.
    2. Samantha Leorato & Maura Mezzetti, 2015. "Spatial Panel Data Model with error dependence: a Bayesian Separable Covariance Approach," CEIS Research Paper 338, Tor Vergata University, CEIS, revised 09 Apr 2015.
    3. Z. Rezaei Ghahroodi & M. Ganjali, 2013. "A Bayesian approach for analysing longitudinal nominal outcomes using random coefficients transitional generalized logit model: an application to the labour force survey data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(7), pages 1425-1445, July.
    4. Anis Fradi & Chafik Samir & Ines Adouani, 2024. "A New Bayesian Approach to Global Optimization on Parametrized Surfaces in $$\mathbb {R}^{3}$$ R 3," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1077-1100, September.
    5. Antonello Loddo & Shawn Ni & Dongchu Sun, 2011. "Selection of Multivariate Stochastic Volatility Models via Bayesian Stochastic Search," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 342-355, July.
    6. Chen, Ming-Hui & Ibrahim, Joseph G. & Sinha, Debajyoti, 2004. "A new joint model for longitudinal and survival data with a cure fraction," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 18-34, October.
    7. Nandram, Balgobin & Zelterman, Daniel, 2007. "Computational Bayesian inference for estimating the size of a finite population," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2934-2945, March.
    8. Samaneh Mahabadi & Mojtaba Ganjali, 2015. "A Bayesian approach for sensitivity analysis of incomplete multivariate longitudinal data with potential nonrandom dropout," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 397-417, December.
    9. Fuentes-García, Ruth & Mena, Ramsés H. & Walker, Stephen G., 2009. "A nonparametric dependent process for Bayesian regression," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1112-1119, April.
    10. Brewer, M. J. & Aitken, C. G. G. & Talbot, M., 1996. "A comparison of hybrid strategies for Gibbs sampling in mixed graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 21(3), pages 343-365, March.
    11. Kozumi, Hideo, 2004. "Posterior analysis of latent competing risk models by parallel tempering," Computational Statistics & Data Analysis, Elsevier, vol. 46(3), pages 441-458, June.
    12. H. Abebe & F. Tan & G. Breukelen & M. Berger, 2014. "Robustness of Bayesian D-optimal design for the logistic mixed model against misspecification of autocorrelation," Computational Statistics, Springer, vol. 29(6), pages 1667-1690, December.
    13. Deschamps, Philippe J., 2012. "Bayesian estimation of generalized hyperbolic skewed student GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3035-3054.
    14. Hattam, Caroline & Holloway, Garth J., 2007. "Bayes Estimates of Time to Organic Certification," 81st Annual Conference, April 2-4, 2007, Reading University, UK 7979, Agricultural Economics Society.
    15. Peter F. Thall & Lurdes Y. T. Inoue & Thomas G. Martin, 2002. "Adaptive Decision Making in a Lymphocyte Infusion Trial," Biometrics, The International Biometric Society, vol. 58(3), pages 560-568, September.
    16. M. Ghosh & B. Carlin & M. Srivastava, 1995. "Probability matching priors for linear calibration," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 4(2), pages 333-357, December.
    17. Pang, Wan Kai & Yu, Bosco Wing-Tong & Troutt, Marvin D. & Hou, Shui Hung, 2008. "A simulation-based approach to the study of coefficient of variation of dividend yields," European Journal of Operational Research, Elsevier, vol. 189(2), pages 559-569, September.
    18. Martijn G. de Jong & Donald R. Lehmann & Oded Netzer, 2012. "State-Dependence Effects in Surveys," Marketing Science, INFORMS, vol. 31(5), pages 838-854, September.
    19. David B. Dunson, 2001. "Bayesian Modeling of the Level and Duration of Fertility in the Menstrual Cycle," Biometrics, The International Biometric Society, vol. 57(4), pages 1067-1073, December.
    20. Chakraborty, Sounak, 2009. "Simultaneous cancer classification and gene selection with Bayesian nearest neighbor method: An integrated approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1462-1474, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:32:y:2017:i:1:d:10.1007_s00180-016-0668-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.