IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v71y2015i2p364-375.html
   My bibliography  Save this article

Nonparametric estimation of transition probabilities in the non-Markov illness-death model: A comparative study

Author

Listed:
  • Jacobo de Uña-Álvarez
  • Luís Meira-Machado

Abstract

No abstract is available for this item.

Suggested Citation

  • Jacobo de Uña-Álvarez & Luís Meira-Machado, 2015. "Nonparametric estimation of transition probabilities in the non-Markov illness-death model: A comparative study," Biometrics, The International Biometric Society, vol. 71(2), pages 364-375, June.
  • Handle: RePEc:bla:biomet:v:71:y:2015:i:2:p:364-375
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12288
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Datta, Somnath & Satten, Glen A., 2001. "Validity of the Aalen-Johansen estimators of stage occupation probabilities and Nelson-Aalen estimators of integrated transition hazards for non-Markov models," Statistics & Probability Letters, Elsevier, vol. 55(4), pages 403-411, December.
    2. Luís Meira-Machado & Javier Roca-Pardiñas & Ingrid Van Keilegom & Carmen Cadarso-Suárez, 2013. "Bandwidth selection for the estimation of transition probabilities in the location-scale progressive three-state model," Computational Statistics, Springer, vol. 28(5), pages 2185-2210, October.
    3. Amorim, Ana Paula & de Uña-Álvarez, Jacobo & Meira-Machado, Luís, 2011. "Presmoothing the transition probabilities in the illness-death model," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 797-806, July.
    4. Spitoni Cristian & Verduijn Marion & Putter Hein, 2012. "Estimation and Asymptotic Theory for Transition Probabilities in Markov Renewal Multi-State Models," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-39, August.
    5. Somnath Datta & Glen A. Satten, 2002. "Estimation of Integrated Transition Hazards and Stage Occupation Probabilities for Non-Markov Systems Under Dependent Censoring," Biometrics, The International Biometric Society, vol. 58(4), pages 792-802, December.
    6. Stute, W., 1993. "Consistent Estimation Under Random Censorship When Covariables Are Present," Journal of Multivariate Analysis, Elsevier, vol. 45(1), pages 89-103, April.
    7. Glen A. Satten, 1999. "Estimating the Extent of Tracking in Interval-Censored Chain-Of-Events Data," Biometrics, The International Biometric Society, vol. 55(4), pages 1228-1231, December.
    8. David V. Glidden, 2002. "Robust Inference for Event Probabilities with Non-Markov Event Data," Biometrics, The International Biometric Society, vol. 58(2), pages 361-368, June.
    9. Halina Frydman & Michael Szarek, 2009. "Nonparametric Estimation in a Markov “Illness–Death” Process from Interval Censored Observations with Missing Intermediate Transition Status," Biometrics, The International Biometric Society, vol. 65(1), pages 143-151, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niklas Maltzahn & Rune Hoff & Odd O. Aalen & Ingrid S. Mehlum & Hein Putter & Jon Michael Gran, 2021. "A hybrid landmark Aalen-Johansen estimator for transition probabilities in partially non-Markov multi-state models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 737-760, October.
    2. Giorgos Bakoyannis & Dipankar Bandyopadhyay, 2022. "Nonparametric tests for multistate processes with clustered data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 837-867, October.
    3. Gustavo Soutinho & Luís Meira-Machado, 2023. "Nonparametric estimation of the distribution of gap times for recurrent events," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 103-128, March.
    4. Rune Hoff & Hein Putter & Ingrid Sivesind Mehlum & Jon Michael Gran, 2019. "Landmark estimation of transition probabilities in non-Markov multi-state models with covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 660-680, October.
    5. Ritesh Ramchandani & Dianne M. Finkelstein & David A. Schoenfeld, 2020. "Estimation for an accelerated failure time model with intermediate states as auxiliary information," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 1-20, January.
    6. Arthur Berg & Dimitris Politis & Kagba Suaray & Hui Zeng, 2020. "Reduced bias nonparametric lifetime density and hazard estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 704-727, September.
    7. Jacobo de Uña‐Álvarez & Micha Mandel, 2018. "Nonparametric estimation of transition probabilities for a general progressive multi‐state model under cross‐sectional sampling," Biometrics, The International Biometric Society, vol. 74(4), pages 1203-1212, December.
    8. Nießl, Alexandra & Allignol, Arthur & Beyersmann, Jan & Mueller, Carina, 2023. "Statistical inference for state occupation and transition probabilities in non-Markov multi-state models subject to both random left-truncation and right-censoring," Econometrics and Statistics, Elsevier, vol. 25(C), pages 110-124.
    9. Guibert, Quentin & Planchet, Frédéric, 2018. "Non-parametric inference of transition probabilities based on Aalen–Johansen integral estimators for acyclic multi-state models: application to LTC insurance," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 21-36.
    10. Gustavo Soutinho & Luís Meira-Machado, 2022. "Methods for checking the Markov condition in multi-state survival data," Computational Statistics, Springer, vol. 37(2), pages 751-780, April.
    11. Fuino, Michel & Wagner, Joël, 2018. "Long-term care models and dependence probability tables by acuity level: New empirical evidence from Switzerland," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 51-70.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rune Hoff & Hein Putter & Ingrid Sivesind Mehlum & Jon Michael Gran, 2019. "Landmark estimation of transition probabilities in non-Markov multi-state models with covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 660-680, October.
    2. Niklas Maltzahn & Rune Hoff & Odd O. Aalen & Ingrid S. Mehlum & Hein Putter & Jon Michael Gran, 2021. "A hybrid landmark Aalen-Johansen estimator for transition probabilities in partially non-Markov multi-state models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 737-760, October.
    3. Jan Beyersmann & Hein Putter, 2014. "A note on computing average state occupation times," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(62), pages 1681-1696.
    4. Dennis Dobler & Andrew Titman, 2020. "Dynamic inference for non‐Markov transition probabilities under random right censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 572-586, June.
    5. Ling Lan & Dipankar Bandyopadhyay & Somnath Datta, 2017. "Non-parametric regression in clustered multistate current status data with informative cluster size," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(1), pages 31-57, January.
    6. Nießl, Alexandra & Allignol, Arthur & Beyersmann, Jan & Mueller, Carina, 2023. "Statistical inference for state occupation and transition probabilities in non-Markov multi-state models subject to both random left-truncation and right-censoring," Econometrics and Statistics, Elsevier, vol. 25(C), pages 110-124.
    7. Somnath Datta & Rajeshwari Sundaram, 2006. "Nonparametric Estimation of Stage Occupation Probabilities in a Multistage Model with Current Status Data," Biometrics, The International Biometric Society, vol. 62(3), pages 829-837, September.
    8. Arthur Allignol & Martin Schumacher & Jan Beyersmann, 2011. "Estimating summary functionals in multistate models with an application to hospital infection data," Computational Statistics, Springer, vol. 26(2), pages 181-197, June.
    9. Giorgos Bakoyannis & Dipankar Bandyopadhyay, 2022. "Nonparametric tests for multistate processes with clustered data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 837-867, October.
    10. Araújo, Artur & Meira-Machado, Luís & Roca-Pardiñas, Javier, 2014. "TPmsm: Estimation of the Transition Probabilities in 3-State Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i04).
    11. Luís Meira-Machado & Jacobo Uña-Álvarez & Somnath Datta, 2015. "Nonparametric estimation of conditional transition probabilities in a non-Markov illness-death model," Computational Statistics, Springer, vol. 30(2), pages 377-397, June.
    12. Xiaofeng Lv & Gupeng Zhang & Guangyu Ren, 2017. "Gini index estimation for lifetime data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 275-304, April.
    13. Liang, Weijuan & Zhang, Qingzhao & Ma, Shuangge, 2024. "Hierarchical false discovery rate control for high-dimensional survival analysis with interactions," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    14. Olivier Lopez & Xavier Milhaud & Pierre-Emmanuel Thérond, 2016. "Tree-based censored regression with applications in insurance," Post-Print hal-01364437, HAL.
    15. Zhiping Qiu & Jing Qin & Yong Zhou, 2016. "Composite Estimating Equation Method for the Accelerated Failure Time Model with Length-biased Sampling Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 396-415, June.
    16. Gustavo Soutinho & Luís Meira-Machado, 2022. "Methods for checking the Markov condition in multi-state survival data," Computational Statistics, Springer, vol. 37(2), pages 751-780, April.
    17. Wang Zhu & Wang C.Y., 2010. "Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
    18. Bao, Yanchun & He, Shuyuan & Mei, Changlin, 2007. "The Koul-Susarla-Van Ryzin and weighted least squares estimates for censored linear regression model: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6488-6497, August.
    19. Bella Vakulenko-Lagun & Micha Mandel & Yair Goldberg, 2017. "Nonparametric estimation in the illness-death model using prevalent data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 25-56, January.
    20. Lopez, O. & Patilea, V., 2009. "Nonparametric lack-of-fit tests for parametric mean-regression models with censored data," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 210-230, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:71:y:2015:i:2:p:364-375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.