IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v74y2022i5d10.1007_s10463-021-00819-x.html
   My bibliography  Save this article

Nonparametric tests for multistate processes with clustered data

Author

Listed:
  • Giorgos Bakoyannis

    (Indiana University)

  • Dipankar Bandyopadhyay

    (Virginia Commonwealth University)

Abstract

In this work, we propose nonparametric two-sample tests for population-averaged transition and state occupation probabilities for continuous-time and finite state space processes with clustered, right-censored, and/or left-truncated data. We consider settings where the two groups under comparison are independent or dependent, with or without complete cluster structure. The proposed tests do not impose assumptions regarding the structure of the within-cluster dependence and are applicable to settings with informative cluster size and/or non-Markov processes. The asymptotic properties of the tests are rigorously established using empirical process theory. Simulation studies show that the proposed tests work well even with a small number of clusters, and that they can be substantially more powerful compared to the only, to the best of our knowledge, previously proposed nonparametric test for this problem. The tests are illustrated using data from a multicenter randomized controlled trial on metastatic squamous-cell carcinoma of the head and neck.

Suggested Citation

  • Giorgos Bakoyannis & Dipankar Bandyopadhyay, 2022. "Nonparametric tests for multistate processes with clustered data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 837-867, October.
  • Handle: RePEc:spr:aistmt:v:74:y:2022:i:5:d:10.1007_s10463-021-00819-x
    DOI: 10.1007/s10463-021-00819-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-021-00819-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-021-00819-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    2. Somnath Datta & Glen A. Satten, 2002. "Estimation of Integrated Transition Hazards and Stage Occupation Probabilities for Non-Markov Systems Under Dependent Censoring," Biometrics, The International Biometric Society, vol. 58(4), pages 792-802, December.
    3. Studer, Matthias & Struffolino, Emanuela & Fasang, Anette Eva, 2018. "Estimating the Relationship between Time-varying Covariates and Trajectories: The Sequence Analysis Multistate Model Procedure," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 48(1), pages 103-135.
    4. Dandan Liu & John D. Kalbfleisch & Douglas E. Schaubel, 2011. "A Positive Stable Frailty Model for Clustered Failure Time Data with Covariate-Dependent Frailty," Biometrics, The International Biometric Society, vol. 67(1), pages 8-17, March.
    5. Shaun R. Seaman & Menelaos Pavlou & Andrew J. Copas, 2014. "Methods for observed-cluster inference when cluster size is informative: A review and clarifications," Biometrics, The International Biometric Society, vol. 70(2), pages 449-456, June.
    6. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, September.
    7. Giorgos Bakoyannis, 2020. "Nonparametric tests for transition probabilities in nonhomogeneous Markov processes," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 32(1), pages 131-156, January.
    8. Hui Zhang & Douglas E. Schaubel & John D. Kalbfleisch, 2011. "Proportional Hazards Regression for the Analysis of Clustered Survival Data from Case–Cohort Studies," Biometrics, The International Biometric Society, vol. 67(1), pages 18-28, March.
    9. repec:bla:biomet:v:71:y:2015:i:4:p:1034-1041 is not listed on IDEAS
    10. David V. Glidden, 2002. "Robust Inference for Event Probabilities with Non-Markov Event Data," Biometrics, The International Biometric Society, vol. 58(2), pages 361-368, June.
    11. Luís Meira-Machado & Jacobo Uña-Álvarez & Somnath Datta, 2015. "Nonparametric estimation of conditional transition probabilities in a non-Markov illness-death model," Computational Statistics, Springer, vol. 30(2), pages 377-397, June.
    12. Jacobo de Uña‐Álvarez & Micha Mandel, 2018. "Nonparametric estimation of transition probabilities for a general progressive multi‐state model under cross‐sectional sampling," Biometrics, The International Biometric Society, vol. 74(4), pages 1203-1212, December.
    13. Jacobo de Uña-Álvarez & Luís Meira-Machado, 2015. "Nonparametric estimation of transition probabilities in the non-Markov illness-death model: A comparative study," Biometrics, The International Biometric Society, vol. 71(2), pages 364-375, June.
    14. Giorgos Bakoyannis, 2021. "Nonparametric analysis of nonhomogeneous multistate processes with clustered observations," Biometrics, The International Biometric Society, vol. 77(2), pages 533-546, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niklas Maltzahn & Rune Hoff & Odd O. Aalen & Ingrid S. Mehlum & Hein Putter & Jon Michael Gran, 2021. "A hybrid landmark Aalen-Johansen estimator for transition probabilities in partially non-Markov multi-state models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 737-760, October.
    2. Dennis Dobler & Andrew Titman, 2020. "Dynamic inference for non‐Markov transition probabilities under random right censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 572-586, June.
    3. Rune Hoff & Hein Putter & Ingrid Sivesind Mehlum & Jon Michael Gran, 2019. "Landmark estimation of transition probabilities in non-Markov multi-state models with covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 660-680, October.
    4. Nießl, Alexandra & Allignol, Arthur & Beyersmann, Jan & Mueller, Carina, 2023. "Statistical inference for state occupation and transition probabilities in non-Markov multi-state models subject to both random left-truncation and right-censoring," Econometrics and Statistics, Elsevier, vol. 25(C), pages 110-124.
    5. Gustavo Soutinho & Luís Meira-Machado, 2023. "Nonparametric estimation of the distribution of gap times for recurrent events," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 103-128, March.
    6. Ritesh Ramchandani & Dianne M. Finkelstein & David A. Schoenfeld, 2020. "Estimation for an accelerated failure time model with intermediate states as auxiliary information," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 1-20, January.
    7. Fuino, Michel & Wagner, Joël, 2018. "Long-term care models and dependence probability tables by acuity level: New empirical evidence from Switzerland," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 51-70.
    8. Jacobo de Uña-Álvarez & Luís Meira-Machado, 2015. "Nonparametric estimation of transition probabilities in the non-Markov illness-death model: A comparative study," Biometrics, The International Biometric Society, vol. 71(2), pages 364-375, June.
    9. Gustavo Soutinho & Luís Meira-Machado, 2022. "Methods for checking the Markov condition in multi-state survival data," Computational Statistics, Springer, vol. 37(2), pages 751-780, April.
    10. Ling Lan & Dipankar Bandyopadhyay & Somnath Datta, 2017. "Non-parametric regression in clustered multistate current status data with informative cluster size," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(1), pages 31-57, January.
    11. Guibert, Quentin & Planchet, Frédéric, 2018. "Non-parametric inference of transition probabilities based on Aalen–Johansen integral estimators for acyclic multi-state models: application to LTC insurance," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 21-36.
    12. Giorgos Bakoyannis, 2021. "Nonparametric analysis of nonhomogeneous multistate processes with clustered observations," Biometrics, The International Biometric Society, vol. 77(2), pages 533-546, June.
    13. Persson, Petra & Qiu, Xinyao & Rossin-Slater, Maya, 2021. "Family Spillover Effects of Marginal Diagnoses: The Case of ADHD," IZA Discussion Papers 14020, Institute of Labor Economics (IZA).
    14. Gustavo J. Bobonis & Paul J. Gertler & Marco Gonzalez-Navarro & Simeon Nichter, 2022. "Vulnerability and Clientelism," American Economic Review, American Economic Association, vol. 112(11), pages 3627-3659, November.
    15. Jongmoo Jay Choi & Hoje Jo & Jimi Kim & Moo Sung Kim, 2018. "Business Groups and Corporate Social Responsibility," Journal of Business Ethics, Springer, vol. 153(4), pages 931-954, December.
    16. Friedrich, Sarah & Pauly, Markus, 2018. "MATS: Inference for potentially singular and heteroscedastic MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 166-179.
    17. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    18. Valentine Fays & Benoît Mahy & François Rycx, 2023. "Wage differences according to workers' origin: The role of working more upstream in GVCs," LABOUR, CEIS, vol. 37(2), pages 319-342, June.
    19. Cantoni, Enrico & Gazzè, Ludovica & Schafer, Jerome, 2021. "Turnout in concurrent elections: Evidence from two quasi-experiments in Italy," European Journal of Political Economy, Elsevier, vol. 70(C).
    20. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:74:y:2022:i:5:d:10.1007_s10463-021-00819-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.