IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v125y2015i4p1470-1499.html
   My bibliography  Save this article

Fractional time stochastic partial differential equations

Author

Listed:
  • Chen, Zhen-Qing
  • Kim, Kyeong-Hun
  • Kim, Panki

Abstract

In this paper, we introduce a class of stochastic partial differential equations (SPDEs) with fractional time-derivatives, and study the L2-theory of the equations. This class of SPDEs can be used to describe random effects on transport of particles in medium with thermal memory or particles subject to sticking and trapping.

Suggested Citation

  • Chen, Zhen-Qing & Kim, Kyeong-Hun & Kim, Panki, 2015. "Fractional time stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1470-1499.
  • Handle: RePEc:eee:spapps:v:125:y:2015:i:4:p:1470-1499
    DOI: 10.1016/j.spa.2014.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414914002713
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2014.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guido Germano & Mauro Politi & Enrico Scalas & Ren'e L. Schilling, 2008. "Stochastic calculus for uncoupled continuous-time random walks," Papers 0802.3769, arXiv.org, revised Jan 2009.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junmei Wang & James Hoult & Yubin Yan, 2021. "Spatial Discretization for Stochastic Semi-Linear Subdiffusion Equations Driven by Fractionally Integrated Multiplicative Space-Time White Noise," Mathematics, MDPI, vol. 9(16), pages 1-38, August.
    2. Kumar, Vivek, 2022. "Stochastic fractional heat equation perturbed by general Gaussian and non-Gaussian noise," Statistics & Probability Letters, Elsevier, vol. 184(C).
    3. Chen, Le & Hu, Yaozhong & Nualart, David, 2019. "Nonlinear stochastic time-fractional slow and fast diffusion equations on Rd," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5073-5112.
    4. Zou, Guang-an & Lv, Guangying & Wu, Jiang-Lun, 2018. "On the regularity of weak solutions to space–time fractional stochastic heat equations," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 84-89.
    5. Asogwa, Sunday A. & Nane, Erkan, 2017. "Intermittency fronts for space-time fractional stochastic partial differential equations in (d+1) dimensions," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1354-1374.
    6. Tuan, Nguyen Huy & Caraballo, Tomás & Thach, Tran Ngoc, 2023. "New results for stochastic fractional pseudo-parabolic equations with delays driven by fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 24-67.
    7. Liu, Xinfei & Yang, Xiaoyuan, 2023. "Numerical approximation of the stochastic equation driven by the fractional noise," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    8. Sweilam, N.H. & El-Sakout, D.M. & Muttardi, M.M., 2020. "Numerical study for time fractional stochastic semi linear advection diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scalas, Enrico & Viles, Noèlia, 2014. "A functional limit theorem for stochastic integrals driven by a time-changed symmetric α-stable Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 385-410.
    2. Guoxing Lin, 2018. "Analysis of PFG Anomalous Diffusion via Real-Space and Phase-Space Approaches," Mathematics, MDPI, vol. 6(2), pages 1-16, January.
    3. Álvaro Cartea, 2013. "Derivatives pricing with marked point processes using tick-by-tick data," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 111-123, January.
    4. Schumer, Rina & Baeumer, Boris & Meerschaert, Mark M., 2011. "Extremal behavior of a coupled continuous time random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(3), pages 505-511.
    5. Frank Marten & Krasimira Tsaneva-Atanasova & Luca Giuggioli, 2012. "Bacterial Secretion and the Role of Diffusive and Subdiffusive First Passage Processes," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    6. Dexter Cahoy, 2012. "Moment estimators for the two-parameter M-Wright distribution," Computational Statistics, Springer, vol. 27(3), pages 487-497, September.
    7. Straka, Peter, 2018. "Variable order fractional Fokker–Planck equations derived from Continuous Time Random Walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 451-463.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:125:y:2015:i:4:p:1470-1499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.