IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v22y2007i4p521-531.html
   My bibliography  Save this article

Visualization of competitive market structure by means of choice data

Author

Listed:
  • Werner Kunz

Abstract

This paper presents a method for visualizing competitive market structures based on scanner panel date where asymmetries are taken into account. For this, I combined consumer choice models based on mixed logit models with three-mode principal component analysis. This approach can be used to unfold a competitive market structure map. The methodology presented is able to quantify the clout and receptivity of various brands. The results can then be visualized over time. Using this approach, guidelines for promotional activities of new brands can be provided, and possible threats from the competition detected.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Werner Kunz, 2007. "Visualization of competitive market structure by means of choice data," Computational Statistics, Springer, vol. 22(4), pages 521-531, December.
  • Handle: RePEc:spr:compst:v:22:y:2007:i:4:p:521-531
    DOI: 10.1007/s00180-007-0059-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-007-0059-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-007-0059-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, October.
    2. Pieter Kroonenberg & Jan Leeuw, 1980. "Principal component analysis of three-mode data by means of alternating least squares algorithms," Psychometrika, Springer;The Psychometric Society, vol. 45(1), pages 69-97, March.
    3. Lee G. Cooper, 1988. "Competitive Maps: The Structure Underlying Asymmetric Cross Elasticities," Management Science, INFORMS, vol. 34(6), pages 707-723, June.
    4. Ledyard Tucker, 1966. "Some mathematical notes on three-mode factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 279-311, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:hum:wpaper:sfb649dp2007-060 is not listed on IDEAS
    2. Perederiy, Volodymyr, 2007. "Kombinierte Liquiditäts- und Solvenzkennzahlen und ein darauf basierendes Insolvenzprognosemodell für deutsche GmbHs," SFB 649 Discussion Papers 2007-060, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. Ó González-Benito & M P Martínez-Ruiz & A Molla-Descals, 2009. "Spatial mapping of price competition using logit-type market share models and store-level scanner-data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 52-62, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2007-032 is not listed on IDEAS
    2. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    3. Henk Kiers, 1991. "Hierarchical relations among three-way methods," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 449-470, September.
    4. Willem Kloot & Pieter Kroonenberg, 1985. "External analysis with three-mode principal component models," Psychometrika, Springer;The Psychometric Society, vol. 50(4), pages 479-494, December.
    5. Pieter M. Kroonenberg & Cornelis J. Lammers & Ineke Stoop, 1985. "Three-Mode Principal Component Analysis of Multivariate Longitudinal Organizational Data," Sociological Methods & Research, , vol. 14(2), pages 99-136, November.
    6. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    7. Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.
    8. Wilderjans, Tom & Ceulemans, Eva & Van Mechelen, Iven, 2009. "Simultaneous analysis of coupled data blocks differing in size: A comparison of two weighting schemes," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1086-1098, February.
    9. Kiers, Henk A. L., 1998. "Three-way SIMPLIMAX for oblique rotation of the three-mode factor analysis core to simple structure," Computational Statistics & Data Analysis, Elsevier, vol. 28(3), pages 307-324, September.
    10. Henk Kiers & Pieter Kroonenberg & Jos Berge, 1992. "An efficient algorithm for TUCKALS3 on data with large numbers of observation units," Psychometrika, Springer;The Psychometric Society, vol. 57(3), pages 415-422, September.
    11. Yang, Chih-Wen & Sung, Yen-Ching, 2010. "Constructing a mixed-logit model with market positioning to analyze the effects of new mode introduction," Journal of Transport Geography, Elsevier, vol. 18(1), pages 175-182.
    12. Kohei Adachi, 2009. "Joint Procrustes Analysis for Simultaneous Nonsingular Transformation of Component Score and Loading Matrices," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 667-683, December.
    13. Michel Velden & Tammo Bijmolt, 2006. "Generalized canonical correlation analysis of matrices with missing rows: a simulation study," Psychometrika, Springer;The Psychometric Society, vol. 71(2), pages 323-331, June.
    14. Paolo Giordani & Roberto Rocci & Giuseppe Bove, 2020. "Factor Uniqueness of the Structural Parafac Model," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 555-574, September.
    15. Alwin Stegeman & Tam Lam, 2014. "Three-Mode Factor Analysis by Means of Candecomp/Parafac," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 426-443, July.
    16. Caterina Liberati & Paolo Mariani, 2012. "Banking customer satisfaction evaluation: a three-way factor perspective," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(4), pages 323-336, December.
    17. Kenta Mitsushita & Shin Murakoshi & Masato Koyama, 2023. "How are various natural disasters cognitively represented?: a psychometric study of natural disaster risk perception applying three-mode principal component analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 977-1000, March.
    18. Roberto Rocci & Jos Berge, 2002. "Transforming three-way arrays to maximal simplicity," Psychometrika, Springer;The Psychometric Society, vol. 67(3), pages 351-365, September.
    19. Bilian Chen & Zhening Li & Shuzhong Zhang, 2015. "On optimal low rank Tucker approximation for tensors: the case for an adjustable core size," Journal of Global Optimization, Springer, vol. 62(4), pages 811-832, August.
    20. Timmerman, Marieke E. & Kiers, Henk A. L., 2002. "Three-way component analysis with smoothness constraints," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 447-470, September.
    21. Jos Berge & Jan Leeuw & Pieter Kroonenberg, 1987. "Some additional results on principal components analysis of three-mode data by means of alternating least squares algorithms," Psychometrika, Springer;The Psychometric Society, vol. 52(2), pages 183-191, June.

    More about this item

    Keywords

    Three-mode PCA; Elasticities; Joint plots; Market structure analysis;
    All these keywords.

    JEL classification:

    • D49 - Microeconomics - - Market Structure, Pricing, and Design - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:22:y:2007:i:4:p:521-531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.