IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v6y2012i4p323-336.html
   My bibliography  Save this article

Banking customer satisfaction evaluation: a three-way factor perspective

Author

Listed:
  • Caterina Liberati
  • Paolo Mariani

Abstract

As management of a national bank wanted to analyze its retail service competition loss probably due to low customer satisfaction, we carried out an empirical study based on a sample of 27,000 retail customers. The survey aimed to analyze retail service weaknesses and to individuate possible recovery actions measuring their effectiveness across different waves (three time lags). We studied a definition of a new dissimilarity measure exploiting a dimension reduction obtained by a three-way factor analysis (TFA). We had previously focused our attention on the limits of this approach related to the geometrical properties of the TFA applied. We introduced a reassessment of the points to adjust the three-way solution according to the quality of representation of the points. This transformation only rescaled the factor scores producing a local adjustment of the point configuration. We then performed a trajectory analysis of the different waves. The results showed the effectiveness of our approach. Therefore, further study of the derivation of a synthetic measure of cluster routes seems appropriate. Copyright Springer-Verlag Berlin Heidelberg 2012

Suggested Citation

  • Caterina Liberati & Paolo Mariani, 2012. "Banking customer satisfaction evaluation: a three-way factor perspective," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(4), pages 323-336, December.
  • Handle: RePEc:spr:advdac:v:6:y:2012:i:4:p:323-336
    DOI: 10.1007/s11634-012-0118-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11634-012-0118-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11634-012-0118-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pieter Kroonenberg & Jan Leeuw, 1980. "Principal component analysis of three-mode data by means of alternating least squares algorithms," Psychometrika, Springer;The Psychometric Society, vol. 45(1), pages 69-97, March.
    2. Finn, Adam, 2011. "Investigating the non-linear effects of e-service quality dimensions on customer satisfaction," Journal of Retailing and Consumer Services, Elsevier, vol. 18(1), pages 27-37.
    3. Arbore, Alessandro & Busacca, Bruno, 2009. "Customer satisfaction and dissatisfaction in retail banking: Exploring the asymmetric impact of attribute performances," Journal of Retailing and Consumer Services, Elsevier, vol. 16(4), pages 271-280.
    4. Mihelis, G. & Grigoroudis, E. & Siskos, Y. & Politis, Y. & Malandrakis, Y., 2001. "Customer satisfaction measurement in the private bank sector," European Journal of Operational Research, Elsevier, vol. 130(2), pages 347-360, April.
    5. Ledyard Tucker, 1966. "Some mathematical notes on three-mode factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 279-311, September.
    6. Escofier, B. & Pages, J., 1994. "Multiple factor analysis (AFMULT package)," Computational Statistics & Data Analysis, Elsevier, vol. 18(1), pages 121-140, August.
    7. Henk Kiers, 1991. "Hierarchical relations among three-way methods," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 449-470, September.
    8. Rizzi, Alfredo & Vichi, Maurizio, 1995. "Representation, synthesis, variability and data preprocessing of a three-way data set," Computational Statistics & Data Analysis, Elsevier, vol. 19(2), pages 203-222, February.
    9. Pierpaolo D’Urso, 2000. "Dissimilarity measures for time trajectories," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 9(1), pages 53-83, January.
    10. repec:ucp:bkecon:9780226316529 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    2. Klapper, Daniel & Cooper, Lee G. & Hildebrandt, Lutz, 1999. "The congruence of theoretical and empirical patterns of inter-store price competition," SFB 373 Discussion Papers 1999,44, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    3. Henk Kiers, 1997. "Three-mode orthomax rotation," Psychometrika, Springer;The Psychometric Society, vol. 62(4), pages 579-598, December.
    4. Kohei Adachi, 2011. "Three-Way Tucker2 Component Analysis Solutions of Stimuli × Responses × Individuals Data with Simple Structure and the Fewest Core Differences," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 285-305, April.
    5. Henk Kiers, 1991. "Hierarchical relations among three-way methods," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 449-470, September.
    6. Willem Kloot & Pieter Kroonenberg, 1985. "External analysis with three-mode principal component models," Psychometrika, Springer;The Psychometric Society, vol. 50(4), pages 479-494, December.
    7. Pieter M. Kroonenberg & Cornelis J. Lammers & Ineke Stoop, 1985. "Three-Mode Principal Component Analysis of Multivariate Longitudinal Organizational Data," Sociological Methods & Research, , vol. 14(2), pages 99-136, November.
    8. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    9. Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.
    10. Werner Kunz, 2007. "Visualization of competitive market structure by means of choice data," Computational Statistics, Springer, vol. 22(4), pages 521-531, December.
    11. Wilderjans, Tom & Ceulemans, Eva & Van Mechelen, Iven, 2009. "Simultaneous analysis of coupled data blocks differing in size: A comparison of two weighting schemes," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1086-1098, February.
    12. Kiers, Henk A. L., 1998. "Three-way SIMPLIMAX for oblique rotation of the three-mode factor analysis core to simple structure," Computational Statistics & Data Analysis, Elsevier, vol. 28(3), pages 307-324, September.
    13. Henk Kiers & Pieter Kroonenberg & Jos Berge, 1992. "An efficient algorithm for TUCKALS3 on data with large numbers of observation units," Psychometrika, Springer;The Psychometric Society, vol. 57(3), pages 415-422, September.
    14. Kohei Adachi, 2009. "Joint Procrustes Analysis for Simultaneous Nonsingular Transformation of Component Score and Loading Matrices," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 667-683, December.
    15. Michel Velden & Tammo Bijmolt, 2006. "Generalized canonical correlation analysis of matrices with missing rows: a simulation study," Psychometrika, Springer;The Psychometric Society, vol. 71(2), pages 323-331, June.
    16. Paolo Giordani & Roberto Rocci & Giuseppe Bove, 2020. "Factor Uniqueness of the Structural Parafac Model," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 555-574, September.
    17. Alwin Stegeman & Tam Lam, 2014. "Three-Mode Factor Analysis by Means of Candecomp/Parafac," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 426-443, July.
    18. Fernando A. F. Ferreira & Sérgio P. Santos & Paulo M. M. Rodrigues & Ronald W. Spahr, 2014. "Evaluating retail banking service quality and convenience with MCDA techniques: a case study at the bank branch level," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 15(1), pages 1-21, February.
    19. Kenta Mitsushita & Shin Murakoshi & Masato Koyama, 2023. "How are various natural disasters cognitively represented?: a psychometric study of natural disaster risk perception applying three-mode principal component analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 977-1000, March.
    20. repec:hum:wpaper:sfb649dp2007-032 is not listed on IDEAS
    21. Roberto Dell'Anno & Adalgiso Amendola, 2015. "Social Exclusion and Economic Growth: An Empirical Investigation in European Economies," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 61(2), pages 274-301, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:6:y:2012:i:4:p:323-336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.