IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v62y2015i4p811-832.html
   My bibliography  Save this article

On optimal low rank Tucker approximation for tensors: the case for an adjustable core size

Author

Listed:
  • Bilian Chen
  • Zhening Li
  • Shuzhong Zhang

Abstract

Approximating high order tensors by low Tucker-rank tensors have applications in psychometrics, chemometrics, computer vision, biomedical informatics, among others. Traditionally, solution methods for finding a low Tucker-rank approximation presume that the size of the core tensor is specified in advance, which may not be a realistic assumption in many applications. In this paper we propose a new computational model where the configuration and the size of the core become a part of the decisions to be optimized. Our approach is based on the so-called maximum block improvement method for non-convex block optimization. Numerical tests on various real data sets from gene expression analysis and image compression are reported, which show promising performances of the proposed algorithms. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Bilian Chen & Zhening Li & Shuzhong Zhang, 2015. "On optimal low rank Tucker approximation for tensors: the case for an adjustable core size," Journal of Global Optimization, Springer, vol. 62(4), pages 811-832, August.
  • Handle: RePEc:spr:jglopt:v:62:y:2015:i:4:p:811-832
    DOI: 10.1007/s10898-014-0231-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-014-0231-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-014-0231-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arie Kapteyn & Heinz Neudecker & Tom Wansbeek, 1986. "An approach ton-mode components analysis," Psychometrika, Springer;The Psychometric Society, vol. 51(2), pages 269-275, June.
    2. Wenyu Sun & Ya-Xiang Yuan, 2006. "Optimization Theory and Methods," Springer Optimization and Its Applications, Springer, number 978-0-387-24976-6, June.
    3. Pieter Kroonenberg & Jan Leeuw, 1980. "Principal component analysis of three-mode data by means of alternating least squares algorithms," Psychometrika, Springer;The Psychometric Society, vol. 45(1), pages 69-97, March.
    4. J. Carroll & Jih-Jie Chang, 1970. "Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition," Psychometrika, Springer;The Psychometric Society, vol. 35(3), pages 283-319, September.
    5. Ledyard Tucker, 1966. "Some mathematical notes on three-mode factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 279-311, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.
    2. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    3. Henk Kiers, 1991. "Hierarchical relations among three-way methods," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 449-470, September.
    4. Willem Kloot & Pieter Kroonenberg, 1985. "External analysis with three-mode principal component models," Psychometrika, Springer;The Psychometric Society, vol. 50(4), pages 479-494, December.
    5. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    6. Wilderjans, Tom & Ceulemans, Eva & Van Mechelen, Iven, 2009. "Simultaneous analysis of coupled data blocks differing in size: A comparison of two weighting schemes," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1086-1098, February.
    7. Michel Velden & Tammo Bijmolt, 2006. "Generalized canonical correlation analysis of matrices with missing rows: a simulation study," Psychometrika, Springer;The Psychometric Society, vol. 71(2), pages 323-331, June.
    8. Paolo Giordani & Roberto Rocci & Giuseppe Bove, 2020. "Factor Uniqueness of the Structural Parafac Model," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 555-574, September.
    9. Alwin Stegeman & Tam Lam, 2014. "Three-Mode Factor Analysis by Means of Candecomp/Parafac," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 426-443, July.
    10. Roberto Rocci & Jos Berge, 2002. "Transforming three-way arrays to maximal simplicity," Psychometrika, Springer;The Psychometric Society, vol. 67(3), pages 351-365, September.
    11. Timmerman, Marieke E. & Kiers, Henk A. L., 2002. "Three-way component analysis with smoothness constraints," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 447-470, September.
    12. Richard Harshman & Margaret Lundy, 1996. "Uniqueness proof for a family of models sharing features of Tucker's three-mode factor analysis and PARAFAC/candecomp," Psychometrika, Springer;The Psychometric Society, vol. 61(1), pages 133-154, March.
    13. Andersson, Claus A. & Henrion, Rene, 1999. "A general algorithm for obtaining simple structure of core arrays in N-way PCA with application to fluorometric data," Computational Statistics & Data Analysis, Elsevier, vol. 31(3), pages 255-278, September.
    14. Rubinstein, Alexander & Slutskin, Lev, 2018. "«Multiway data analysis» and the general problem of journals’ ranking," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 50, pages 90-113.
    15. Carlos Martin-Barreiro & John A. Ramirez-Figueroa & Ana B. Nieto-Librero & Víctor Leiva & Ana Martin-Casado & M. Purificación Galindo-Villardón, 2021. "A New Algorithm for Computing Disjoint Orthogonal Components in the Three-Way Tucker Model," Mathematics, MDPI, vol. 9(3), pages 1-22, January.
    16. Henk Kiers, 1997. "Three-mode orthomax rotation," Psychometrika, Springer;The Psychometric Society, vol. 62(4), pages 579-598, December.
    17. Stegeman, Alwin, 2014. "Finding the limit of diverging components in three-way Candecomp/Parafac—A demonstration of its practical merits," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 203-216.
    18. Dawn Iacobucci & Doug Grisaffe & Wayne DeSarbo, 2017. "Statistical perceptual maps: using confidence region ellipses to enhance the interpretations of brand positions in multidimensional scaling," Journal of Marketing Analytics, Palgrave Macmillan, vol. 5(3), pages 81-98, December.
    19. Ji Yeh Choi & Heungsun Hwang & Marieke E. Timmerman, 2018. "Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 1-20, March.
    20. Alwin Stegeman, 2018. "Simultaneous Component Analysis by Means of Tucker3," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 21-47, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:62:y:2015:i:4:p:811-832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.