IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v81y2002i1p100-119.html
   My bibliography  Save this article

Spatially Adaptive Splines for Statistical Linear Inverse Problems

Author

Listed:
  • Cardot, Hervé

Abstract

This paper introduces a new nonparametric estimator based on penalized regression splines for linear operator equations when the data are noisy. A local roughness penalty that relies on local support properties of B-splines is introduced in order to deal with spatial heterogeneity of the function to be estimated. This estimator is shown to be consistent under weak conditions on the asymptotic behaviour of the singular values of the linear operator. Furthermore, in the usual nonparametric settings, it is shown to attain optimal rates of convergence. Then its good performances are confirmed by means of a simulation study.

Suggested Citation

  • Cardot, Hervé, 2002. "Spatially Adaptive Splines for Statistical Linear Inverse Problems," Journal of Multivariate Analysis, Elsevier, vol. 81(1), pages 100-119, April.
  • Handle: RePEc:eee:jmvana:v:81:y:2002:i:1:p:100-119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(01)91994-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. G. T. Denison & B. K. Mallick & A. F. M. Smith, 1998. "Automatic Bayesian curve fitting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 333-350.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cardot, Hervé & Sarda, Pacal, 2005. "Estimation in generalized linear models for functional data via penalized likelihood," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 24-41, January.
    2. Philip T. Reiss & R. Todd Ogden, 2009. "Smoothing parameter selection for a class of semiparametric linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 505-523, April.
    3. Dahmani, Abdelnasser & Ait Saidi, Ahmed & Bouhmila, Fatah & Aissani, Mouloud, 2009. "Consistency of the Tikhonov's regularization in an ill-posed problem with random data," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 722-727, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianluca Frasso & Jonathan Jaeger & Philippe Lambert, 2016. "Parameter estimation and inference in dynamic systems described by linear partial differential equations," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 259-287, July.
    2. M. P. Wand, 2000. "A Comparison of Regression Spline Smoothing Procedures," Computational Statistics, Springer, vol. 15(4), pages 443-462, December.
    3. Boracchi, Patrizia & Biganzoli, Elia & Marubini, Ettore, 2003. "Joint modelling of cause-specific hazard functions with cubic splines: an application to a large series of breast cancer patients," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 243-262, February.
    4. Basna, Rani & Nassar, Hiba & Podgórski, Krzysztof, 2022. "Data driven orthogonal basis selection for functional data analysis," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. Håvard Rue & Ingelin Steinsland & Sveinung Erland, 2004. "Approximating hidden Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 877-892, November.
    6. Elcin Koc & Cem Iyigun & İnci Batmaz & Gerhard-Wilhelm Weber, 2014. "Efficient adaptive regression spline algorithms based on mapping approach with a case study on finance," Journal of Global Optimization, Springer, vol. 60(1), pages 103-120, September.
    7. Botts, Carsten H. & Daniels, Michael J., 2008. "A flexible approach to Bayesian multiple curve fitting," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5100-5120, August.
    8. Wai-Yin Poon & Hai-Bin Wang, 2014. "Multivariate partially linear single-index models: Bayesian analysis," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(4), pages 755-768, December.
    9. Pena, Daniel & Redondas, Dolores, 2006. "Bayesian curve estimation by model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 688-709, February.
    10. Kim, Daeju & Kawano, Shuichi & Ninomiya, Yoshiyuki, 2023. "Smoothly varying regularization," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    11. P.L. Davies & M. Meise, 2008. "Approximating data with weighted smoothing splines," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(3), pages 207-228.
    12. Piet Jong & Sonia Mazzi, 2001. "Modeling and Smoothing Unequally Spaced Sequence Data," Statistical Inference for Stochastic Processes, Springer, vol. 4(1), pages 53-71, January.
    13. Ghislaine Gayraud & Judith Rousseau, 2002. "Nonparametric Bayesian Estimation of Level Sets," Working Papers 2002-03, Center for Research in Economics and Statistics.
    14. Villani, Mattias & Kohn, Robert & Giordani, Paolo, 2007. "Nonparametric Regression Density Estimation Using Smoothly Varying Normal Mixtures," Working Paper Series 211, Sveriges Riksbank (Central Bank of Sweden).
    15. Leitenstorfer, Florian & Tutz, Gerhard, 2007. "Knot selection by boosting techniques," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4605-4621, May.
    16. Natraj Raman & Jochen L. Leidner, 2018. "Municipal Bond Pricing: A Data Driven Method," IJFS, MDPI, vol. 6(3), pages 1-19, September.
    17. Liu, Laura & Moon, Hyungsik Roger & Schorfheide, Frank, 2021. "Panel forecasts of country-level Covid-19 infections," Journal of Econometrics, Elsevier, vol. 220(1), pages 2-22.
    18. Montserrat Fuentes & Adrian E. Raftery, 2005. "Model Evaluation and Spatial Interpolation by Bayesian Combination of Observations with Outputs from Numerical Models," Biometrics, The International Biometric Society, vol. 61(1), pages 36-45, March.
    19. Stefan Lang & Eva-Maria Pronk & Ludwig Fahrmeir, 2002. "Function estimation with locally adaptive dynamic models," Computational Statistics, Springer, vol. 17(4), pages 479-499, December.
    20. Edward P. Campbell, 2004. "Bayesian selection of threshold autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(4), pages 467-482, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:81:y:2002:i:1:p:100-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.