IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v97y2006i2p548-562.html
   My bibliography  Save this article

Nonlinear least-squares estimation

Author

Listed:
  • Pollard, David
  • Radchenko, Peter

Abstract

The paper uses empirical process techniques to study the asymptotics of the least-squares estimator (LSE) for the fitting of a nonlinear regression function. By combining and extending ideas of Wu and Van de Geer, it establishes new consistency and central limit theorems that hold under only second moment assumptions on the errors. An application to a delicate example of Wu's illustrates the use of the new theorems, leading to a normal approximation to the LSE with unusual logarithmic rescalings.

Suggested Citation

  • Pollard, David & Radchenko, Peter, 2006. "Nonlinear least-squares estimation," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 548-562, February.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:2:p:548-562
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00045-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radchenko, Peter, 2015. "High dimensional single index models," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 266-282.
    2. Pengfei Liu & Mengchen Zhang & Ru Zhang & Qin Zhou, 2021. "Robust Estimation and Tests for Parameters of Some Nonlinear Regression Models," Mathematics, MDPI, vol. 9(6), pages 1-16, March.
    3. Cheng Maolin & Shi Guojun & Han Yun, 2019. "A Modified CES Production Function Model and Its Application in Calculating the Contribution Rate of Energy and Other Influencing Factors to Economic Growth," Journal of Systems Science and Information, De Gruyter, vol. 7(2), pages 161-172, April.
    4. A. Alessandri & L. Cassettari & R. Mosca, 2009. "Nonparametric nonlinear regression using polynomial and neural approximators: a numerical comparison," Computational Management Science, Springer, vol. 6(1), pages 5-24, February.
    5. Maolin Cheng, 2019. "A Grey CES Production Function Model and Its Application in Calculating the Contribution Rate of Economic Growth Factors," Complexity, Hindawi, vol. 2019, pages 1-8, April.
    6. Cui, Hengjian & Hu, Tao, 2011. "On nonlinear regression estimator with denoised variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1137-1149, February.
    7. Cheng Maolin, 2016. "A Generalized Constant Elasticity of Substitution Production Function Model and Its Application," Journal of Systems Science and Information, De Gruyter, vol. 4(3), pages 269-279, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:2:p:548-562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.