IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v302y2022i3p1282-1293.html
   My bibliography  Save this article

Reducing transaction costs for interest rate risk hedging with stochastic programming

Author

Listed:
  • Blomvall, Jörgen
  • Hagenbjörk, Johan

Abstract

Traditional methods for hedging interest rate risk do not take transaction costs into account as they aim to eliminate all risk. We propose a two-stage stochastic programming model for hedging interest rate risk where transaction costs are weighed against portfolio variance. High-quality measurements of term structures enable us to extract the systematic risk factors and make precise estimates of the perceived transaction costs. The hedging cost is weighed against the reduction in portfolio variance by using an adjustable hedging parameter. The hedging procedure is simulated on a daily basis in a realistic setting over an out-of-sample period from 2002 to 2018, and the results are compared to traditional hedging methods through detailed performance attribution. Using second-order stochastic dominance, we show that the proposed method is preferred by all risk-averse investors.

Suggested Citation

  • Blomvall, Jörgen & Hagenbjörk, Johan, 2022. "Reducing transaction costs for interest rate risk hedging with stochastic programming," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1282-1293.
  • Handle: RePEc:eee:ejores:v:302:y:2022:i:3:p:1282-1293
    DOI: 10.1016/j.ejor.2022.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172200090X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth J. Worzel & Christiana Vassiadou-Zeniou & Stavros A. Zenios, 1994. "Integrated Simulation and Optimization Models for Tracking Indices of Fixed-Income Securities," Operations Research, INFORMS, vol. 42(2), pages 223-233, April.
    2. Blomvall, Jörgen, 2017. "Measurement of interest rates using a convex optimization model," European Journal of Operational Research, Elsevier, vol. 256(1), pages 308-316.
    3. Mathias Barkhagen & Jörgen Blomvall, 2016. "Modeling and evaluation of the option book hedging problem using stochastic programming," Quantitative Finance, Taylor & Francis Journals, vol. 16(2), pages 259-273, February.
    4. Gondzio, Jacek & Kouwenberg, Roy & Vorst, Ton, 2003. "Hedging options under transaction costs and stochastic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1045-1068, April.
    5. Russell Davidson & Jean-Yves Duclos, 2000. "Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality," Econometrica, Econometric Society, vol. 68(6), pages 1435-1464, November.
    6. Blomvall, Jorgen & Lindberg, Per Olov, 2002. "A Riccati-based primal interior point solver for multistage stochastic programming," European Journal of Operational Research, Elsevier, vol. 143(2), pages 452-461, December.
    7. Patrick Hagan & Graeme West, 2006. "Interpolation Methods for Curve Construction," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(2), pages 89-129.
    8. Blomvall, Jörgen & Hagenbjörk, Johan, 2019. "A generic framework for monetary performance attribution," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 121-133.
    9. Fong, Wai Mun & Wong, Wing Keung & Lean, Hooi Hooi, 2005. "International momentum strategies: a stochastic dominance approach," Journal of Financial Markets, Elsevier, vol. 8(1), pages 89-109, February.
    10. Zenios, Stavros A. & Holmer, Martin R. & McKendall, Raymond & Vassiadou-Zeniou, Christiana, 1998. "Dynamic models for fixed-income portfolio management under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 22(10), pages 1517-1541, August.
    11. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    12. Vassiadou-Zeniou, Christiana & Zenios, Stavros A., 1996. "Robust optimization models for managing callable bond portfolios," European Journal of Operational Research, Elsevier, vol. 91(2), pages 264-273, June.
    13. Golub, Bennett & Holmer, Martin & McKendall, Raymond & Pohlman, Lawrence & Zenios, Stavros A., 1995. "A stochastic programming model for money management," European Journal of Operational Research, Elsevier, vol. 85(2), pages 282-296, September.
    14. Jason Wu & Suvrajeet Sen, 2000. "A Stochastic Programming Model for Currency Option Hedging," Annals of Operations Research, Springer, vol. 100(1), pages 227-249, December.
    15. Johan Hagenbjörk & Jörgen Blomvall, 2019. "Simulation and evaluation of the distribution of interest rate risk," Computational Management Science, Springer, vol. 16(1), pages 297-327, February.
    16. Lean, Hooi-Hooi & Wong, Wing-Keung & Zhang, Xibin, 2008. "The sizes and powers of some stochastic dominance tests: A Monte Carlo study for correlated and heteroskedastic distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(1), pages 30-48.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azimli, Asil, 2024. "Is gold a safe haven for the U.S. dollar during extreme conditions?," International Economics, Elsevier, vol. 177(C).
    2. Jingtang Ma & Shan Yang, 2024. "High-dimensional stochastic control models for newsvendor problems and deep learning resolution," Annals of Operations Research, Springer, vol. 339(1), pages 789-811, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blomvall, Jorgen & Lindberg, Per Olov, 2003. "Back-testing the performance of an actively managed option portfolio at the Swedish Stock Market, 1990-1999," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1099-1112, April.
    2. Zhidong Bai & Hua Li & Michael McAleer & Wing-Keung Wong, 2015. "Stochastic dominance statistics for risk averters and risk seekers: an analysis of stock preferences for USA and China," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 889-900, May.
    3. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2010. "Market Efficiency of Oil Spot and Futures: A Stochastic Dominance Approach," CIRJE F-Series CIRJE-F-705, CIRJE, Faculty of Economics, University of Tokyo.
    4. Alkhazali, Osamah M. & Zoubi, Taisier A., 2020. "Gold and portfolio diversification: A stochastic dominance analysis of the Dow Jones Islamic indices," Pacific-Basin Finance Journal, Elsevier, vol. 60(C).
    5. Hooi Lean & Kok Phoon & Wing-Keung Wong, 2013. "Stochastic dominance analysis of CTA funds," Review of Quantitative Finance and Accounting, Springer, vol. 40(1), pages 155-170, January.
    6. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2013. "Risk-averse and Risk-seeking Investor Preferences for Oil Spot and Futures," Documentos de Trabajo del ICAE 2013-31, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Aug 2013.
    7. Raymond H. Chan & Ephraim Clark & Xu Guo & Wing-Keung Wong, 2020. "New development on the third-order stochastic dominance for risk-averse and risk-seeking investors with application in risk management," Risk Management, Palgrave Macmillan, vol. 22(2), pages 108-132, June.
    8. Lean, Hooi Hooi & McAleer, Michael & Wong, Wing-Keung, 2015. "Preferences of risk-averse and risk-seeking investors for oil spot and futures before, during and after the Global Financial Crisis," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 204-216.
    9. Guo, Xu & Wong, Wing-Keung, 2016. "Multivariate Stochastic Dominance for Risk Averters and Risk Seekers," MPRA Paper 70637, University Library of Munich, Germany.
    10. Abdelbari El Khamlichi & Thi Hong Van Hoang & Wing‐keung Wong, 2016. "Is Gold Different for Islamic and Conventional Portfolios? A Sectorial Analysis," Post-Print hal-02965765, HAL.
    11. Hoang, Thi-Hong-Van & Lean, Hooi Hooi & Wong, Wing-Keung, 2015. "Is gold good for portfolio diversification? A stochastic dominance analysis of the Paris stock exchange," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 98-108.
    12. Wong, Wing-Keung & Phoon, Kok Fai & Lean, Hooi Hooi, 2008. "Stochastic dominance analysis of Asian hedge funds," Pacific-Basin Finance Journal, Elsevier, vol. 16(3), pages 204-223, June.
    13. Lean, Hooi Hooi & McAleer, Michael & Wong, Wing-Keung, 2010. "Market efficiency of oil spot and futures: A mean-variance and stochastic dominance approach," Energy Economics, Elsevier, vol. 32(5), pages 979-986, September.
    14. Zenios, Stavros A. & Holmer, Martin R. & McKendall, Raymond & Vassiadou-Zeniou, Christiana, 1998. "Dynamic models for fixed-income portfolio management under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 22(10), pages 1517-1541, August.
    15. Hoang, Thi-Hong-Van & Zhu, Zhenzhen & El Khamlichi, Abdelbari & Wong, Wing-Keung, 2019. "Does the Shari’ah screening impact the gold-stock nexus? A sectorial analysis," Resources Policy, Elsevier, vol. 61(C), pages 617-626.
    16. Lean, H.H. & McAleer, M.J. & Wong, W.-K., 2010. "Investor preferences for oil spot and futures based on mean-variance and stochastic dominance," Econometric Institute Research Papers EI 2010-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. Kim-Hung Pho & Tuan-Kiet Tran & Thi Diem-Chinh Ho & Wing-Keung Wong, 2019. "Optimal Solution Techniques in Decision Sciences A Review," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(1), pages 114-161, March.
    18. Chang, C-L. & McAleer, M.J. & Wong, W.-K., 2016. "Management Science, Economics and Finance: A Connection," Econometric Institute Research Papers EI2016-26, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Blomvall, Jörgen & Hagenbjörk, Johan, 2019. "A generic framework for monetary performance attribution," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 121-133.
    20. Wing-Keung Wong & Hooi Hooi Lean & Michael McAleer & Feng-Tse Tsai, 2018. "Why Are Warrant Markets Sustained in Taiwan but Not in China?," Sustainability, MDPI, vol. 10(10), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:302:y:2022:i:3:p:1282-1293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.