IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v16y2019i4d10.1007_s10287-019-00346-4.html
   My bibliography  Save this article

B&B method for discrete partial order optimization

Author

Listed:
  • Vladimir I. Norkin

    (National Academy of Sciences of Ukraine
    National Technical University of Ukraine “I. Sikorsky Kyiv Polytechnic Institute”)

Abstract

The paper extends the branch and bound (B&B) method, primarily developed for the solution of global, discrete, and vector programming problems, to finding nondominated points in a partially ordered space/set. The framework of the generalized B&B method is standard, it includes partition, estimation, and pruning steps, but bounds are different, they are set-valued, and, as a particular case, the bounds may be singletons. For bounding, the method uses a set ordering in the following sense. One set is “less or equal” than the other if for any element of the first set there is a “greater or equal” element in the second one. The defined set ordering is a partial order in the space of sets consisting of mutually nondominated elements. In the B&B method, partitioning is applied to the parts of the original space with nondominated upper bounds. Parts with small upper bounds (less than some lower bound) are pruned. Convergence of the method to the set of all nondominated points is established. The acceleration with respect to the enumerative search is achieved through group evaluation of elements of the original space. Further, the developed B&B method is extended to vector partial order optimization. In the latter case, several partial orders are defined in the decision space. Finally, we develop a B&B method for a so-called constrained partial order optimization problem, where the feasible set is defined by a family of partial orders.

Suggested Citation

  • Vladimir I. Norkin, 2019. "B&B method for discrete partial order optimization," Computational Management Science, Springer, vol. 16(4), pages 577-592, October.
  • Handle: RePEc:spr:comgts:v:16:y:2019:i:4:d:10.1007_s10287-019-00346-4
    DOI: 10.1007/s10287-019-00346-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-019-00346-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-019-00346-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Przybylski, Anthony & Gandibleux, Xavier, 2017. "Multi-objective branch and bound," European Journal of Operational Research, Elsevier, vol. 260(3), pages 856-872.
    2. Francis Sourd & Olivier Spanjaard, 2008. "A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 472-484, August.
    3. Vladimir I. Norkin, 2017. "B&B Solution Technique for Multicriteria Stochastic Optimization Problems," Springer Optimization and Its Applications, in: Sergiy Butenko & Panos M. Pardalos & Volodymyr Shylo (ed.), Optimization Methods and Applications, pages 345-378, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linfeng Zou & Weimin Gui, 2020. "Simulation and prediction of geologic hazards and the impacts on homestay buildings in scenery spots through BIM," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Bergman & Merve Bodur & Carlos Cardonha & Andre A. Cire, 2022. "Network Models for Multiobjective Discrete Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 990-1005, March.
    2. Nathan Adelgren & Akshay Gupte, 2022. "Branch-and-Bound for Biobjective Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 909-933, March.
    3. Audrey Cerqueus & Xavier Gandibleux & Anthony Przybylski & Frédéric Saubion, 2017. "On branching heuristics for the bi-objective 0/1 unidimensional knapsack problem," Journal of Heuristics, Springer, vol. 23(5), pages 285-319, October.
    4. Sune Lauth Gadegaard & Lars Relund Nielsen & Matthias Ehrgott, 2019. "Bi-objective Branch-and-Cut Algorithms Based on LP Relaxation and Bound Sets," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 790-804, October.
    5. Satya Tamby & Daniel Vanderpooten, 2021. "Enumeration of the Nondominated Set of Multiobjective Discrete Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 72-85, January.
    6. Przybylski, Anthony & Gandibleux, Xavier, 2017. "Multi-objective branch and bound," European Journal of Operational Research, Elsevier, vol. 260(3), pages 856-872.
    7. Nicolas Jozefowiez & Gilbert Laporte & Frédéric Semet, 2012. "A Generic Branch-and-Cut Algorithm for Multiobjective Optimization Problems: Application to the Multilabel Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 554-564, November.
    8. Fernández, Elena & Pozo, Miguel A. & Puerto, Justo & Scozzari, Andrea, 2017. "Ordered Weighted Average optimization in Multiobjective Spanning Tree Problem," European Journal of Operational Research, Elsevier, vol. 260(3), pages 886-903.
    9. Cristina Requejo & Eulália Santos, 2020. "Efficient lower and upper bounds for the weight-constrained minimum spanning tree problem using simple Lagrangian based algorithms," Operational Research, Springer, vol. 20(4), pages 2467-2495, December.
    10. Thies, Christian & Kieckhäfer, Karsten & Spengler, Thomas S. & Sodhi, Manbir S., 2019. "Operations research for sustainability assessment of products: A review," European Journal of Operational Research, Elsevier, vol. 274(1), pages 1-21.
    11. Liesiö, Juuso & Andelmin, Juho & Salo, Ahti, 2020. "Efficient allocation of resources to a portfolio of decision making units," European Journal of Operational Research, Elsevier, vol. 286(2), pages 619-636.
    12. Atashpaz Gargari, Masoud & Sahraeian, Rashed, 2023. "An exact criterion space search method for a bi-objective nursing home location and allocation problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 166-180.
    13. Christian Artigues & Nicolas Jozefowiez & Boadu M. Sarpong, 2018. "Column generation algorithms for bi-objective combinatorial optimization problems with a min–max objective," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 117-142, June.
    14. Cacchiani, Valentina & D’Ambrosio, Claudia, 2017. "A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs," European Journal of Operational Research, Elsevier, vol. 260(3), pages 920-933.
    15. De Santis, Marianna & Grani, Giorgio & Palagi, Laura, 2020. "Branching with hyperplanes in the criterion space: The frontier partitioner algorithm for biobjective integer programming," European Journal of Operational Research, Elsevier, vol. 283(1), pages 57-69.
    16. Zouache, Djaafar & Moussaoui, Abdelouahab & Ben Abdelaziz, Fouad, 2018. "A cooperative swarm intelligence algorithm for multi-objective discrete optimization with application to the knapsack problem," European Journal of Operational Research, Elsevier, vol. 264(1), pages 74-88.
    17. Thomas Stidsen & Kim Allan Andersen & Bernd Dammann, 2014. "A Branch and Bound Algorithm for a Class of Biobjective Mixed Integer Programs," Management Science, INFORMS, vol. 60(4), pages 1009-1032, April.
    18. Enrique Machuca & Lawrence Mandow, 2016. "Lower bound sets for biobjective shortest path problems," Journal of Global Optimization, Springer, vol. 64(1), pages 63-77, January.
    19. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    20. Forget, Nicolas & Gadegaard, Sune Lauth & Nielsen, Lars Relund, 2022. "Warm-starting lower bound set computations for branch-and-bound algorithms for multi objective integer linear programs," European Journal of Operational Research, Elsevier, vol. 302(3), pages 909-924.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:16:y:2019:i:4:d:10.1007_s10287-019-00346-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.