IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-68640-0_17.html
   My bibliography  Save this book chapter

B&B Solution Technique for Multicriteria Stochastic Optimization Problems

In: Optimization Methods and Applications

Author

Listed:
  • Vladimir I. Norkin

    (V.M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine
    Faculty of Applied Mathematics of the National Technical University of Ukraine “I. Sikorsky Kyiv Polytechnic Institute”)

Abstract

The paper extends stochastic branch and bound (SB&B) method, primarily developed for solving stochastic global and integer stochastic programming problems, to stochastic multicriteria problems. The specific feature and difficulty of the stochastic optimization problems consists in that they contain random parameters and thus mathematical expectations and other probabilistic integral operators. The scalar stochastic branch and bound method has found various applications for optimization of stochastic workflow models, stochastic schedules, project management, water quality, pollution control, service allocation, reliability optimization, financial portfolio selection, and others. Multicriteria versions of such problems allow more explicit investigation of a trade-off between utility, risk, and other criteria in the problem. In the new SB&B method, upper and lower bounds become vectorial. For example, for a maximization problem, as an upper bound, the value of the vector objective function at the ideal point can be used; as a lower bound, the value of the vector objective function at any feasible point is usually taken. For stochastic optimization problems, such bounds can be calculated exactly only in special cases, for example, when the distribution of random parameters is known and discrete. In the latter case, the estimation problems are reduced to mixed-integer programming. In a general case to get upper bounds, the so-called interchange relaxation is applied, i.e., interchange of optimization and integration operators. Another bounding technique involves the use of multiple independent observations of random parameters and stochastic tangent majorants. Since the bounds are vectorial and may be inexact, the convergence results state finite step convergence to a set of approximate solutions.

Suggested Citation

  • Vladimir I. Norkin, 2017. "B&B Solution Technique for Multicriteria Stochastic Optimization Problems," Springer Optimization and Its Applications, in: Sergiy Butenko & Panos M. Pardalos & Volodymyr Shylo (ed.), Optimization Methods and Applications, pages 345-378, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-68640-0_17
    DOI: 10.1007/978-3-319-68640-0_17
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladimir I. Norkin, 2019. "B&B method for discrete partial order optimization," Computational Management Science, Springer, vol. 16(4), pages 577-592, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-68640-0_17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.