IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0238864.html
   My bibliography  Save this article

Simulation and prediction of geologic hazards and the impacts on homestay buildings in scenery spots through BIM

Author

Listed:
  • Linfeng Zou
  • Weimin Gui

Abstract

The objectives are exploring the impacts of geologic hazards on the construction of homestays, improving the safety of homestay buildings, guaranteeing the safety of tourists, and enhancing the disaster-resistance of homestays in scenery spots. The computer simulation system and Building Information Modeling (BIM) technology are employed to construct a geologic hazard prediction model for homestays. The model utilizes a time history method to establish a complete early-warning and monitoring system by learning the geologic disaster data. The detection of various geologic hazards has verified the effectiveness of the proposed model. The results show that the model can reduce the losses in the case of water accumulation and landslides during storms, and the BIM technology-based homestay buildings will suffer fewer losses. In the case of earthquakes, BIM technology-based homestay buildings have no noticeable shaking and displacement. Compared to traditional construction methods, the displacement is reduced by 49.15%. In the case of a spontaneous fire, the burning area of the BIM technology-based homestay building is only 270m2. The most severe factors affecting the construction of homestay buildings are earthquakes and landslide risks. The BIM technology generates 3D building planning; therefore, planners can fully understand the problems in the building. In the meantime, the multi-source monitoring data of multiple geologic hazards can be monitored and fed back, thereby improving the timeliness of early-warning of geologic hazards. The results are of considerable significance to the prevention of losses caused by geologic hazards, which can significantly improve the understanding of geologic hazards.

Suggested Citation

  • Linfeng Zou & Weimin Gui, 2020. "Simulation and prediction of geologic hazards and the impacts on homestay buildings in scenery spots through BIM," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-14, September.
  • Handle: RePEc:plo:pone00:0238864
    DOI: 10.1371/journal.pone.0238864
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238864
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0238864&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0238864?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vladimir I. Norkin, 2019. "B&B method for discrete partial order optimization," Computational Management Science, Springer, vol. 16(4), pages 577-592, October.
    2. Sanhudo, Luís & Ramos, Nuno M.M. & Poças Martins, João & Almeida, Ricardo M.S.F. & Barreira, Eva & Simões, M. Lurdes & Cardoso, Vítor, 2018. "Building information modeling for energy retrofitting – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 249-260.
    3. Fei Long & Jiaming Liu & Shuying Zhang & Hu Yu & Hou Jiang, 2018. "Development Characteristics and Evolution Mechanism of Homestay Agglomeration in Mogan Mountain, China," Sustainability, MDPI, vol. 10(9), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, Wahhaj & Asif, Muhammad, 2021. "A critical review of energy retrofitting trends in residential buildings with particular focus on the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Sanjin Gumbarević & Ivana Burcar Dunović & Bojan Milovanović & Mergim Gaši, 2020. "Method for Building Information Modeling Supported Project Control of Nearly Zero-Energy Building Delivery," Energies, MDPI, vol. 13(20), pages 1-21, October.
    3. Azraff Bin Rozmi, Mohd Daniel & Thirunavukkarasu, Gokul Sidarth & Jamei, Elmira & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Stojcevski, Alex & Horan, Ben, 2019. "Role of immersive visualization tools in renewable energy system development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Patricia Tzortzopoulos & Ling Ma & João Soliman Junior & Lauri Koskela, 2019. "Evaluating Social Housing Retrofit Options to Support Clients’ Decision Making—SIMPLER BIM Protocol," Sustainability, MDPI, vol. 11(9), pages 1-21, April.
    5. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    6. Xuefeng Ma & Jiaxin Tan & Jiekuan Zhang, 2022. "Spatial–Temporal Correlation between the Tourist Hotel Industry and Town Spatial Morphology: The Case of Phoenix Ancient Town, China," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
    7. Ana Paola Vargas & Leon Hamui, 2021. "Thermal Energy Performance Simulation of a Residential Building Retrofitted with Passive Design Strategies: A Case Study in Mexico," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    8. Puwei Zhang & Li Wu & Rui Li, 2023. "Development Drivers of Rural Summer Health Tourism for the Urban Elderly: A Demand- and Supply-Based Framework," Sustainability, MDPI, vol. 15(13), pages 1-27, July.
    9. Xun Liu & Zhenhan Ding & Xiaobo Li & Zhiyuan Xue, 2023. "Research Progress, Hotspots, and Trends of Using BIM to Reduce Building Energy Consumption: Visual Analysis Based on WOS Database," IJERPH, MDPI, vol. 20(4), pages 1-21, February.
    10. Ali, Usman & Shamsi, Mohammad Haris & Bohacek, Mark & Hoare, Cathal & Purcell, Karl & Mangina, Eleni & O’Donnell, James, 2020. "A data-driven approach to optimize urban scale energy retrofit decisions for residential buildings," Applied Energy, Elsevier, vol. 267(C).
    11. João M. P. Q. Delgado & Ana S. Guimarães & João Poças Martins & Diogo F. R. Parracho & Sara S. Freitas & António G. B. Lima & Leonardo Rodrigues, 2023. "BIM and BEM Interoperability–Evaluation of a Case Study in Modular Wooden Housing," Energies, MDPI, vol. 16(4), pages 1-21, February.
    12. Lei-Yi Peng & Jia Lu & Jian-Ji Luo & Yu-Xuan Wang, 2022. "A Combination of FDM, DEMATEL, and DANP for Disclosing the Interrelationship of Influencing Factors in Rural Homestay Business: Empirical Evidence from China," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    13. Jianzhuang Zheng & Lingyan Huang, 2022. "Characterizing the Spatiotemporal Patterns and Key Determinants of Homestay Industry Agglomeration in Rural China Using Multi Geospatial Datasets," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    14. Liu, Bokai & Penaka, Santhan Reddy & Lu, Weizhuo & Feng, Kailun & Rebbling, Anders & Olofsson, Thomas, 2023. "Data-driven quantitative analysis of an integrated open digital ecosystems platform for user-centric energy retrofits: A case study in northern Sweden," Technology in Society, Elsevier, vol. 75(C).
    15. Xin Zhang & Jiaming Liu & He Zhu & Zongcai Huang & Shuying Zhang & Ping Li, 2021. "A Comparative Study of Customer Perceptions of Urban and Rural Bed and Breakfasts in Beijing: An Analysis of Online Reviews," Sustainability, MDPI, vol. 13(20), pages 1-15, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0238864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.