IDEAS home Printed from https://ideas.repec.org/a/spr/comaot/v21y2015i1d10.1007_s10588-014-9176-3.html
   My bibliography  Save this article

A topological framework to explore longitudinal social networks

Author

Listed:
  • Shahadat Uddin

    (The University of Sydney)

  • Arif Khan

    (The University of Sydney)

  • Liaquat Hossain

    (The University of Hong Kong
    The University of Sydney)

  • Mahendra Piraveenan

    (The University of Sydney)

  • Sven Carlsson

    (Lund University)

Abstract

Longitudinal networks evolve over time through the creation and/or deletion of links among a set of actors (e.g., individuals or organizations). A longitudinal network can be viewed as a single static network (i.e., structure of network is fixed) that aggregates all the edges observed over some time period or as a series of static networks observed in different point of time over the entire network observation period (i.e., structure of network is changing over time). The understanding of the underlying structural changes of longitudinal networks and contributions of individual actors to these changes enable researchers to investigate different structural properties of such networks. By following a topological approach (i.e., static topology and dynamic topology), this paper first proposes a framework to analyze longitudinal social networks. In static topology, social networks analysis (SNA) methods are applied to the aggregated network of entire observation period. Smaller segments of network data (i.e., short-interval network) that are accumulated in less time compared to the entire network observation period are used in the dynamic topology for analysis purposes. Based on this framework, this study then conducts topological analysis of two longitudinal networks to explore over time actor-level dynamics during different phases of these two networks. The proposed topological framework can be utilized to explore structural vulnerabilities and evolutionary trend of various longitudinal social networks (e.g., disease spread network and computer virus network). This will eventually lead to better authorization and control over such networks. For network science researchers, this framework will bring new research opportunities to enhance our present knowledge about different aspects (e.g., network disintegration and contribution of individual actor’s to network evolution) of longitudinal social networks.

Suggested Citation

  • Shahadat Uddin & Arif Khan & Liaquat Hossain & Mahendra Piraveenan & Sven Carlsson, 2015. "A topological framework to explore longitudinal social networks," Computational and Mathematical Organization Theory, Springer, vol. 21(1), pages 48-68, March.
  • Handle: RePEc:spr:comaot:v:21:y:2015:i:1:d:10.1007_s10588-014-9176-3
    DOI: 10.1007/s10588-014-9176-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10588-014-9176-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10588-014-9176-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garry Robins & Philippa Pattison & Stanley Wasserman, 1999. "Logit models and logistic regressions for social networks: III. Valued relations," Psychometrika, Springer;The Psychometric Society, vol. 64(3), pages 371-394, September.
    2. Gerhard G. Van De Bunt & Marijtje A.J. Van Duijn & Tom A.B. Snijders, 1999. "Friendship Networks Through Time: An Actor-Oriented Dynamic Statistical Network Model," Computational and Mathematical Organization Theory, Springer, vol. 5(2), pages 167-192, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raúl M. Ortiz-Gaona & Marcos Postigo-Boix & José L. Melús-Moreno, 2021. "Extent prediction of the information and influence propagation in online social networks," Computational and Mathematical Organization Theory, Springer, vol. 27(2), pages 195-230, June.
    2. Shakir Karim & Shahadat Uddin & Tasadduq Imam & Mohammad Ali Moni, 2020. "A Systematic Review of Network Studies Based on Administrative Health Data," IJERPH, MDPI, vol. 17(7), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel E. Sosa & Steven D. Eppinger & Craig M. Rowles, 2004. "The Misalignment of Product Architecture and Organizational Structure in Complex Product Development," Management Science, INFORMS, vol. 50(12), pages 1674-1689, December.
    2. Joshua Lospinoso & Michael Schweinberger & Tom Snijders & Ruth Ripley, 2011. "Assessing and accounting for time heterogeneity in stochastic actor oriented models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(2), pages 147-176, July.
    3. Liu, Jie & Ge, Huilin, 2022. "Collaboration mechanisms and community detection of statisticians based on ERGMs and kNN-walktrap," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    4. Krivitsky, Pavel N., 2017. "Using contrastive divergence to seed Monte Carlo MLE for exponential-family random graph models," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 149-161.
    5. Termeh Shafie & David Schoch, 2021. "Multiplexity analysis of networks using multigraph representations," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1425-1444, December.
    6. Mark Huisman & Tom A. B. Snijders, 2003. "Statistical Analysis of Longitudinal Network Data With Changing Composition," Sociological Methods & Research, , vol. 32(2), pages 253-287, November.
    7. Maurits C. de Klepper & Giuseppe (Joe) Labianca & Ed Sleebos & Filip Agneessens, 2017. "Sociometric Status and Peer Control Attempts: A Multiple Status Hierarchies Approach," Journal of Management Studies, Wiley Blackwell, vol. 54(1), pages 1-31, January.
    8. Alessandro Lomi & Philippa Pattison, 2006. "Manufacturing Relations: An Empirical Study of the Organization of Production Across Multiple Networks," Organization Science, INFORMS, vol. 17(3), pages 313-332, June.
    9. Ronald L. Breiger & John W. Mohr, 2004. "Institutional Logics from the Aggregation of Organizational Networks: Operational Procedures for the Analysis of Counted Data," Computational and Mathematical Organization Theory, Springer, vol. 10(1), pages 17-43, May.
    10. Prasanta Bhattacharya & Tuan Q. Phan & Xue Bai & Edoardo M. Airoldi, 2019. "A Coevolution Model of Network Structure and User Behavior: The Case of Content Generation in Online Social Networks," Service Science, INFORMS, vol. 30(1), pages 117-132, March.
    11. Karen Haandrikman & Leo J. G. Wissen, 2012. "Explaining the Flight of Cupid’s Arrow: A Spatial Random Utility Model of Partner Choice," European Journal of Population, Springer;European Association for Population Studies, vol. 28(4), pages 417-439, November.
    12. Siegwart Lindenberg, 2000. "It Takes Both Trust and Lack of Mistrust: The Workings of Cooperation and Relational Signaling in Contractual Relationships," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 4(1), pages 11-33, March.
    13. Chu-Shore, Jesse, 2010. "Homogenization and Specialization Effects of International Trade: Are Cultural Goods Exceptional?," World Development, Elsevier, vol. 38(1), pages 37-47, January.
    14. Slobodan Kacanski & Dean Lusher, 2017. "The Application of Social Network Analysis to Accounting and Auditing," International Journal of Academic Research in Accounting, Finance and Management Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Accounting, Finance and Management Sciences, vol. 7(3), pages 182-197, July.
    15. John Skvoretz & Filip Agneessens, 2007. "Reciprocity, Multiplexity, and Exchange: Measures," Quality & Quantity: International Journal of Methodology, Springer, vol. 41(3), pages 341-357, June.
    16. Hideki Fujiyama, 2020. "Network centrality, social loops, and utility maximization," Evolutionary and Institutional Economics Review, Springer, vol. 17(1), pages 39-70, January.
    17. Xu, Helian & Feng, Lianyue & Wu, Gang & Zhang, Qi, 2021. "Evolution of structural properties and its determinants of global waste paper trade network based on temporal exponential random graph models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. Paulo Reis Mourao, 2021. "Footsteps in the sand: studying refugee paths since 2005 through a network analysis of 205 territories," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(2), pages 563-600, April.
    19. Domenico De Stefano & Susanna Zaccarin, 2013. "Modelling Multiple Interactions in Science and Technology Networks," Industry and Innovation, Taylor & Francis Journals, vol. 20(3), pages 221-240, April.
    20. Buchmann, Tobias & Hain, Daniel & Kudic, Muhamed & Müller, Matthias, 2014. "Exploring the Evolution of Innovation Networks in Science-driven and Scale-intensive Industries: New Evidence from a Stochastic Actor-based Approach," IWH Discussion Papers 1/2014, Halle Institute for Economic Research (IWH).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comaot:v:21:y:2015:i:1:d:10.1007_s10588-014-9176-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.