IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v176y2023i10d10.1007_s10584-023-03597-y.html
   My bibliography  Save this article

Revisiting the bias correction of climate models for impact studies

Author

Listed:
  • Thi Lan Anh Dinh

    (Sorbonne Université)

  • Filipe Aires

    (Université PSL, CNRS)

Abstract

Climate models are widely used in climate change impact studies. However, these simulations often cannot be used directly due to inherent limitations, such as structural biases or parametric uncertainties. Nevertheless, several so-called “bias correction” (B-C) or “bias adjustment” methods have been proposed to get these simulations closer to real observations. Various studies have reviewed available methods; however, numerous innovative methods have been developed in recent years. An up-to-date review of the B-C methods is presented here. To compare these complex methods, a focus is placed on the pedagogy of the presentation. The main lines of thought are presented based on the method assumptions, mathematical form, properties, and applicative purposes. Six representative quantile-based methods are compared for temperature and precipitation monthly time series over the European area, for a climate change scenario with a strong CO2 forcing which is chosen here to facilitate the analysis of the differences among the methods. New, simple, and easy-to-understand diagnostic tools are recommended to measure the impact of the adjustment on the ability of B-C methods to: (1) bring the model outputs closer to observations over the historical record, (2) exploit as much as possible the climate change signal provided by the model. Each B-C method is intended to find the best compromise between these two objectives. A discussion on potential pathways for future developments is finally proposed.

Suggested Citation

  • Thi Lan Anh Dinh & Filipe Aires, 2023. "Revisiting the bias correction of climate models for impact studies," Climatic Change, Springer, vol. 176(10), pages 1-30, October.
  • Handle: RePEc:spr:climat:v:176:y:2023:i:10:d:10.1007_s10584-023-03597-y
    DOI: 10.1007/s10584-023-03597-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-023-03597-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-023-03597-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthias Themeßl & Andreas Gobiet & Georg Heinrich, 2012. "Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal," Climatic Change, Springer, vol. 112(2), pages 449-468, May.
    2. S. Asseng & F. Ewert & C. Rosenzweig & J. W. Jones & J. L. Hatfield & A. C. Ruane & K. J. Boote & P. J. Thorburn & R. P. Rötter & D. Cammarano & N. Brisson & B. Basso & P. Martre & P. K. Aggarwal & C., 2013. "Uncertainty in simulating wheat yields under climate change," Nature Climate Change, Nature, vol. 3(9), pages 827-832, September.
    3. Douglas Maraun & Theodore G. Shepherd & Martin Widmann & Giuseppe Zappa & Daniel Walton & José M. Gutiérrez & Stefan Hagemann & Ingo Richter & Pedro M. M. Soares & Alex Hall & Linda O. Mearns, 2017. "Towards process-informed bias correction of climate change simulations," Nature Climate Change, Nature, vol. 7(11), pages 764-773, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, J.Y. & Li, Q.S. & Chan, P.W. & Zhao, X.D., 2023. "Assessment of future wind resources under climate change using a multi-model and multi-method ensemble approach," Applied Energy, Elsevier, vol. 329(C).
    2. A. Casanueva & J. Bedia & S. Herrera & J. Fernández & J. M. Gutiérrez, 2018. "Direct and component-wise bias correction of multi-variate climate indices: the percentile adjustment function diagnostic tool," Climatic Change, Springer, vol. 147(3), pages 411-425, April.
    3. R. Manzanas & L. Fiwa & C. Vanya & H. Kanamaru & J. M. Gutiérrez, 2020. "Statistical downscaling or bias adjustment? A case study involving implausible climate change projections of precipitation in Malawi," Climatic Change, Springer, vol. 162(3), pages 1437-1453, October.
    4. Salem, Golam Saleh Ahmed & Kazama, So & Shahid, Shamsuddin & Dey, Nepal C., 2018. "Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region," Agricultural Water Management, Elsevier, vol. 208(C), pages 33-42.
    5. Licheng Liu & Wang Zhou & Kaiyu Guan & Bin Peng & Shaoming Xu & Jinyun Tang & Qing Zhu & Jessica Till & Xiaowei Jia & Chongya Jiang & Sheng Wang & Ziqi Qin & Hui Kong & Robert Grant & Symon Mezbahuddi, 2024. "Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Shekhar, Ankit & Shapiro, Charles A., 2022. "Prospective crop yield and income return based on a retrospective analysis of a long-term rainfed agriculture experiment in Nebraska," Agricultural Systems, Elsevier, vol. 198(C).
    7. Wang, Zhiqiang & Ye, Li & Jiang, Jingyi & Fan, Yida & Zhang, Xiaoran, 2022. "Review of application of EPIC crop growth model," Ecological Modelling, Elsevier, vol. 467(C).
    8. Alison Kay, 2022. "Differences in hydrological impacts using regional climate model and nested convection-permitting model data," Climatic Change, Springer, vol. 173(1), pages 1-19, July.
    9. Christine M. Albano & Maureen I. McCarthy & Michael D. Dettinger & Stephanie A. McAfee, 2021. "Techniques for constructing climate scenarios for stress test applications," Climatic Change, Springer, vol. 164(3), pages 1-25, February.
    10. Ibrahim M. A. Soliman, 2019. "Forecasting Model of Wheat Yield in Relation to Rainfall Variability in North Africa Countries," International Journal of Food and Beverage Manufacturing and Business Models (IJFBMBM), IGI Global, vol. 4(2), pages 1-17, July.
    11. Mittenzwei, Klaus & Persson, Tomas & Höglind, Mats & Kværnø, Sigrun, 2017. "Combined effects of climate change and policy uncertainty on the agricultural sector in Norway," Agricultural Systems, Elsevier, vol. 153(C), pages 118-126.
    12. Markhof,Yannick Valentin & Ponzini,Giulia & Wollburg,Philip Randolph, 2022. "Measuring Disaster Crop Production Losses Using Survey Microdata : Evidence from Sub-Saharan Africa," Policy Research Working Paper Series 9968, The World Bank.
    13. Alessandro Dosio & Christopher Lennard & Jonathan Spinoni, 2022. "Projections of indices of daily temperature and precipitation based on bias-adjusted CORDEX-Africa regional climate model simulations," Climatic Change, Springer, vol. 170(1), pages 1-24, January.
    14. Palosuo, Taru & Hoffmann, Munir P. & Rötter, Reimund P. & Lehtonen, Heikki S., 2021. "Sustainable intensification of crop production under alternative future changes in climate and technology: The case of the North Savo region," Agricultural Systems, Elsevier, vol. 190(C).
    15. L. V. Noto & G. Cipolla & D. Pumo & A. Francipane, 2023. "Climate Change in the Mediterranean Basin (Part II): A Review of Challenges and Uncertainties in Climate Change Modeling and Impact Analyses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2307-2323, May.
    16. Hao, Shirui & Ryu, Dongryeol & Western, Andrew & Perry, Eileen & Bogena, Heye & Franssen, Harrie Jan Hendricks, 2021. "Performance of a wheat yield prediction model and factors influencing the performance: A review and meta-analysis," Agricultural Systems, Elsevier, vol. 194(C).
    17. Markus Stoffel & Thomas Mendlik & Michelle Schneuwly-Bollschweiler & Andreas Gobiet, 2014. "Possible impacts of climate change on debris-flow activity in the Swiss Alps," Climatic Change, Springer, vol. 122(1), pages 141-155, January.
    18. Zimmermann, Andrea & Webber, Heidi & Zhao, Gang & Ewert, Frank & Kros, Johannes & Wolf, Joost & Britz, Wolfgang & de Vries, Wim, 2017. "Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements," Agricultural Systems, Elsevier, vol. 157(C), pages 81-92.
    19. Andrew C. Ross & Raymond G. Najjar, 2019. "Evaluation of methods for selecting climate models to simulate future hydrological change," Climatic Change, Springer, vol. 157(3), pages 407-428, December.
    20. Martin Mäll & Ryota Nakamura & Ülo Suursaar & Tomoya Shibayama, 2020. "Pseudo-climate modelling study on projected changes in extreme extratropical cyclones, storm waves and surges under CMIP5 multi-model ensemble: Baltic Sea perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 67-99, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:176:y:2023:i:10:d:10.1007_s10584-023-03597-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.