IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v173y2022i1d10.1007_s10584-022-03393-0.html
   My bibliography  Save this article

Modeling climate change impact on groundwater and adaptation strategies for its sustainable management in the Karnal district of Northwest India

Author

Listed:
  • Satyendra Kumar

    (ICAR-Central Soil Salinity Research Institute)

  • Bhaskar Narjary

    (ICAR-Central Soil Salinity Research Institute)

  • Vivekanand

    (ICAR-Central Soil Salinity Research Institute)

  • Adlul Islam

    (Indian Council of Agricultural Research)

  • R. K. Yadav

    (ICAR-Central Soil Salinity Research Institute)

  • S. K. Kamra

    (ICAR-Central Soil Salinity Research Institute)

Abstract

Extensive use of groundwater in the rice–wheat cropping system of northwest India has resulted in groundwater depletion at an alarming rate of 33–88 cm per year over the past 2–3 decades. Projected climate change is likely to affect crop water demand, groundwater withdrawal, and replenishment in future. A modeling study was undertaken to simulate the impact of climate change on groundwater resources under existing rice–wheat cropping system and with revised crop management strategies in the Karnal district of Northwest India. Different cop management strategies considered are marginal shift in sowing dates of rice and wheat, and fractional diversification of rice area to maize. MODFLOW software driven by the projected climate change scenarios under four representative concentration pathways (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) were used for simulating groundwater behavior in the study area under business as usual and proposed crop management strategies. Simulation results indicated 4.3–61.5 m (28.9–291.2%) additional decline in groundwater levels in different zones of the study area under different RCPs by the end century (2070–2099) period in relation to the reference groundwater level of year 2015 under the existing sowing dates of 15 June for rice and 15 November for wheat. Maintaining rice sowing date at 15 June but advancing wheat sowing date by 10 days can reduce groundwater decline by 9.8–14.4%, 14.4–19.6%, and 18.1–25.8% under different RCPs by the end of early (2010–2039), mid (2040–2069), and end (2070–2099) century periods, respectively, vis-à-vis prevailing sowing dates. Replacing 20%, 30%, and 40% rice area with maize in rice–wheat system is likely to reduce groundwater decline by 7.1 (24.9%), 10.1 (35.3%), and 13.8 m (48.5%), respectively, in comparison to projected end century (2099) decline of 28.5 m under the prevailing sowing dates of rice–wheat. However, declining groundwater trend of rice–wheat would be reversed with the replacement of 80% rice area under maize crop. Simulation results suggest that specific crop management strategies can potentially moderate groundwater decline in the study area under the envisaged climate change.

Suggested Citation

  • Satyendra Kumar & Bhaskar Narjary & Vivekanand & Adlul Islam & R. K. Yadav & S. K. Kamra, 2022. "Modeling climate change impact on groundwater and adaptation strategies for its sustainable management in the Karnal district of Northwest India," Climatic Change, Springer, vol. 173(1), pages 1-30, July.
  • Handle: RePEc:spr:climat:v:173:y:2022:i:1:d:10.1007_s10584-022-03393-0
    DOI: 10.1007/s10584-022-03393-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-022-03393-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-022-03393-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G.S., Kaushika & Arora, Himanshu & K.S., Hari Prasad, 2019. "Analysis of climate change effects on crop water availability for paddy, wheat and berseem," Agricultural Water Management, Elsevier, vol. 225(C).
    2. David B. Lobell & Adam Sibley & J. Ivan Ortiz-Monasterio, 2012. "Extreme heat effects on wheat senescence in India," Nature Climate Change, Nature, vol. 2(3), pages 186-189, March.
    3. Jalota, S.K. & Jain, A.K. & Vashisht, B.B., 2018. "Minimize water deficit in wheat crop to ameliorate groundwater decline in rice-wheat cropping system," Agricultural Water Management, Elsevier, vol. 208(C), pages 261-267.
    4. Xiang, Zaichen & Bailey, Ryan T. & Nozari, Soheil & Husain, Zainab & Kisekka, Isaya & Sharda, Vaishali & Gowda, Prasanna, 2020. "DSSAT-MODFLOW: A new modeling framework for exploring groundwater conservation strategies in irrigated areas," Agricultural Water Management, Elsevier, vol. 232(C).
    5. Goutam Konapala & Ashok K. Mishra & Yoshihide Wada & Michael E. Mann, 2020. "Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    6. Singh, Karam, 2009. "Act to Save Groundwater in Punjab: Its Impact on Water Table, Electricity Subsidy and Environment," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 22(Conferenc).
    7. Lauffenburger, Zachary H. & Gurdak, Jason J. & Hobza, Chris & Woodward, Duane & Wolf, Cassandra, 2018. "Irrigated agriculture and future climate change effects on groundwater recharge, northern High Plains aquifer, USA," Agricultural Water Management, Elsevier, vol. 204(C), pages 69-80.
    8. Minhas, P.S. & Yadav, R.K. & Lal, K. & Chaturvedi, R.K., 2015. "Effect of long-term irrigation with wastewater on growth, biomass production and water use by Eucalyptus (Eucalyptus tereticornis Sm.) planted at variable stocking density," Agricultural Water Management, Elsevier, vol. 152(C), pages 151-160.
    9. Dubey, Rachana & Pathak, Himanshu & Chakrabarti, Bidisha & Singh, Shivdhar & Gupta, Dipak Kumar & Harit, R.C., 2020. "Impact of terminal heat stress on wheat yield in India and options for adaptation," Agricultural Systems, Elsevier, vol. 181(C).
    10. Kumar, Satyendra & Narjary, Bhaskar & Kumar, Kapil & Jat, H.S. & Kamra, S.K. & Yadav, R.K., 2019. "Developing soil matric potential based irrigation strategies of direct seeded rice for improving yield and water productivity," Agricultural Water Management, Elsevier, vol. 215(C), pages 8-15.
    11. Matthew Rodell & Isabella Velicogna & James S. Famiglietti, 2009. "Satellite-based estimates of groundwater depletion in India," Nature, Nature, vol. 460(7258), pages 999-1002, August.
    12. Jalota, S. K. & Arora, V. K., 2002. "Model-based assessment of water balance components under different cropping systems in north-west India," Agricultural Water Management, Elsevier, vol. 57(1), pages 75-87, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui Liu & Chuanhua Li & Liangliang Li, 2024. "Climate Warming Benefits Plant Growth but Not Net Carbon Uptake: Simulation of Alaska Tundra and Needle Leaf Forest Using LPJ-GUESS," Land, MDPI, vol. 13(5), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vashisht, B.B. & Jalota, S.K. & Ramteke, P. & Kaur, Ramandeep & Jayeswal, D.K., 2021. "Impact of rice (O. sativa L.) straw incorporation induced changes in soil physical and chemical properties on yield, water and nitrogen–balance and –use efficiency of wheat (T. aestivum L.) in rice–wh," Agricultural Systems, Elsevier, vol. 194(C).
    2. Amarasinghe, Upali A. & Smakhtin, Vladimir U. & Sharma, Bharat R. & Eriyagama, Nishadi, 2010. "Bailout with white revolution or sink deeper?: groundwater depletion and impacts in the Moga District of Punjab, India," IWMI Research Reports 108672, International Water Management Institute.
    3. Samanpreet Kaur & Rajan Aggarwal & S Jalota & Bharat Vashisht & Prit Lubana, 2014. "Estimation of Groundwater Balance Using Soil-Water-Vegetation Model and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4359-4371, September.
    4. Sahil Bhatia & S. P. Singh, 2023. "Can an Incentivized Command-and-Control Approach Improve Groundwater Management? An Analysis of Indian Punjab," Sustainability, MDPI, vol. 15(22), pages 1-27, November.
    5. Biraj Kanti Mondal & Satiprasad Sahoo, 2022. "Evaluation of spatiotemporal dynamics of water storage changes at block level for sustainable water management in Howrah District of West Bengal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9519-9568, July.
    6. Yogita Sharma & Baljinder Kaur Sidana & Sunny Kumar & Samanpreet Kaur & Milkho Kaur Sekhon & Amrit Kaur Mahal & Sushant Mehan, 2023. "Pre and Post Water Level Behaviour in Punjab: Impact Analysis with DiD Approach," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    7. Kishore, P. & Roy, D. & Birthal, P.S. & Srivastava, S.K., 2024. "Regulation, and Policy Response to Groundwater Preservation in India," IAMO Policy Briefs 344994, Institute of Agricultural Development in Transition Economies (IAMO).
    8. Singh, Karam, 2011. "Groundwater Depletion in Punjab: Measurement and Countering Strategies," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 66(4), pages 1-17.
    9. Kishore, P. & Roy, D. & Birthal, P.S. & Srivastava, S.K., 2024. "Regulation, and Policy Response to Groundwater Preservation in India," IAMO Policy Briefs 344994, Institute of Agricultural Development in Transition Economies (IAMO).
    10. Sukhwinder Singh & Julian Park, 2018. "Drivers of change in groundwater resources: a case study of the Indian Punjab," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(4), pages 965-979, August.
    11. Vasilaky, Kathryn & Harou, Aurélie & Alfredo, Katherine & Kapur, Ishita, 2023. "What works for water conservation? Evidence from a field experiment in India," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    12. Paudel, Gokul P. & Chamberlin, Jordan & Nguyen, Trung Thanh, 2024. "Can sustainable intensification boost agricultural productivity and fertilizer use efficiency? Insights from wheat systems in the eastern Indo-Gangetic Plains," IAAE 2024 Conference, August 2-7, 2024, New Delhi, India 344263, International Association of Agricultural Economists (IAAE).
    13. Meena, Raj Pal & Karnam, Venkatesh & R, Sendhil & Rinki, & Sharma, R.K. & Tripathi, S.C. & Singh, Gyanendra Pratap, 2019. "Identification of water use efficient wheat genotypes with high yield for regions of depleting water resources in India," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    14. Jeetendra Prakash Aryal & Cathy R. Farnworth & Ritika Khurana & Srabashi Ray & Tek B. Sapkota & Dil Bahadur Rahut, 2020. "Does women’s participation in agricultural technology adoption decisions affect the adoption of climate‐smart agriculture? Insights from Indo‐Gangetic Plains of India," Review of Development Economics, Wiley Blackwell, vol. 24(3), pages 973-990, August.
    15. Yusuke Kuwayama, 2019. "Policy Note: "Opportunities and Challenges of Using Satellite Data to Inform Water Policy"," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-9, July.
    16. Bahi, Dhilanveer Teja Singh & Paavola, Jouni, 2023. "Liquid petroleum gas access and consumption expenditure: measuring energy poverty through wellbeing and gender equality in India," LSE Research Online Documents on Economics 120564, London School of Economics and Political Science, LSE Library.
    17. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2021. "Reflections on farmers’ social networks: a means for sustainable agricultural development?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2973-3008, March.
    18. Kamal Kumar Murari & Sandeep Mahato & T. Jayaraman & Madhura Swaminathan, 2018. "Extreme Temperatures and Crop Yields in Karnataka, India," Journal, Review of Agrarian Studies, vol. 8(2), pages 92-114, July-Dece.
    19. Jayanta Das & A. T. M. Sakiur Rahman & Tapash Mandal & Piu Saha, 2021. "Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7289-7309, May.
    20. Rajat Agarwal & P. K. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:173:y:2022:i:1:d:10.1007_s10584-022-03393-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.