Minimize water deficit in wheat crop to ameliorate groundwater decline in rice-wheat cropping system
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2018.06.020
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chen, Suyin & Zhang, Xiying & Sun, Hongyong & Ren, Tusheng & Wang, Yanmei, 2010. "Effects of winter wheat row spacing on evapotranpsiration, grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 97(8), pages 1126-1132, August.
- Seckler, D., 1996. "The new era of water resources management: from \dry\ to \wet\ water savings," IWMI Research Reports H018206, International Water Management Institute.
- Jalota, S.K. & Singh, K.B. & Chahal, G.B.S. & Gupta, R.K. & Chakraborty, Somsubhra & Sood, Anil & Ray, S.S. & Panigrahy, S., 2009. "Integrated effect of transplanting date, cultivar and irrigation on yield, water saving and water productivity of rice (Oryza sativa L.) in Indian Punjab: Field and simulation study," Agricultural Water Management, Elsevier, vol. 96(7), pages 1096-1104, July.
- Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
- Balwinder-Singh & Eberbach, P.L. & Humphreys, E. & Kukal, S.S., 2011. "The effect of rice straw mulch on evapotranspiration, transpiration and soil evaporation of irrigated wheat in Punjab, India," Agricultural Water Management, Elsevier, vol. 98(12), pages 1847-1855, October.
- Timsina, J. & Godwin, D. & Humphreys, E. & Yadvinder-Singh & Bijay-Singh & Kukal, S.S. & Smith, D., 2008. "Evaluation of options for increasing yield and water productivity of wheat in Punjab, India using the DSSAT-CSM-CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 95(9), pages 1099-1110, September.
- Jalota, S. K. & Arora, V. K., 2002. "Model-based assessment of water balance components under different cropping systems in north-west India," Agricultural Water Management, Elsevier, vol. 57(1), pages 75-87, September.
- Jalota, S.K. & Vashisht, B.B. & Kaur, Harsimran & Kaur, Samanpreet & Kaur, Prabhjyot, 2014. "Location specific climate change scenario and its impact on rice and wheat in Central Indian Punjab," Agricultural Systems, Elsevier, vol. 131(C), pages 77-86.
- Mahajan, G. & Bharaj, T.S. & Timsina, J., 2009. "Yield and water productivity of rice as affected by time of transplanting in Punjab, India," Agricultural Water Management, Elsevier, vol. 96(3), pages 525-532, March.
- Jalota, S.K. & Kaur, Harsimran & Kaur, Samanpreet & Vashisht, B.B., 2013. "Impact of climate change scenarios on yield, water and nitrogen-balance and -use efficiency of rice–wheat cropping system," Agricultural Water Management, Elsevier, vol. 116(C), pages 29-38.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Satyendra Kumar & Bhaskar Narjary & Vivekanand & Adlul Islam & R. K. Yadav & S. K. Kamra, 2022. "Modeling climate change impact on groundwater and adaptation strategies for its sustainable management in the Karnal district of Northwest India," Climatic Change, Springer, vol. 173(1), pages 1-30, July.
- Vashisht, B.B. & Jalota, S.K. & Ramteke, P. & Kaur, Ramandeep & Jayeswal, D.K., 2021. "Impact of rice (O. sativa L.) straw incorporation induced changes in soil physical and chemical properties on yield, water and nitrogen–balance and –use efficiency of wheat (T. aestivum L.) in rice–wh," Agricultural Systems, Elsevier, vol. 194(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jalota, S.K. & Singh, K.B. & Chahal, G.B.S. & Gupta, R.K. & Chakraborty, Somsubhra & Sood, Anil & Ray, S.S. & Panigrahy, S., 2009. "Integrated effect of transplanting date, cultivar and irrigation on yield, water saving and water productivity of rice (Oryza sativa L.) in Indian Punjab: Field and simulation study," Agricultural Water Management, Elsevier, vol. 96(7), pages 1096-1104, July.
- Brar, S.K. & Mahal, S.S. & Brar, A.S. & Vashist, K.K. & Sharma, Neerja & Buttar, G.S., 2012. "Transplanting time and seedling age affect water productivity, rice yield and quality in north-west India," Agricultural Water Management, Elsevier, vol. 115(C), pages 217-222.
- Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014.
"Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data,"
Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
- Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Discussion Papers Series 518, School of Economics, University of Queensland, Australia.
- Vashisht, B.B. & Jalota, S.K. & Ramteke, P. & Kaur, Ramandeep & Jayeswal, D.K., 2021. "Impact of rice (O. sativa L.) straw incorporation induced changes in soil physical and chemical properties on yield, water and nitrogen–balance and –use efficiency of wheat (T. aestivum L.) in rice–wh," Agricultural Systems, Elsevier, vol. 194(C).
- Jalota, S.K. & Vashisht, B.B. & Kaur, Harsimran & Kaur, Samanpreet & Kaur, Prabhjyot, 2014. "Location specific climate change scenario and its impact on rice and wheat in Central Indian Punjab," Agricultural Systems, Elsevier, vol. 131(C), pages 77-86.
- Bluemling, Bettina & Yang, Hong & Pahl-Wostl, Claudia, 2007. "Making water productivity operational--A concept of agricultural water productivity exemplified at a wheat-maize cropping pattern in the North China plain," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 11-23, July.
- Kumar, M. Dinesh & van Dam, J. C., 2009. "Improving water productivity in agriculture in India: beyond \u2018more crop per drop\u2019," IWMI Books, Reports H042639, International Water Management Institute.
- van Halsema, Gerardo E. & Vincent, Linden, 2012. "Efficiency and productivity terms for water management: A matter of contextual relativism versus general absolutism," Agricultural Water Management, Elsevier, vol. 108(C), pages 9-15.
- Kumar, M. Dinesh & van Dam, J. C., 2008. "Improving water productivity in agriculture in developing economies: in search of new avenues," IWMI Conference Proceedings 245276, International Water Management Institute.
- Alauddin, Mohammad & Sharma, Bharat R., 2013.
"Inter-district rice water productivity differences in Bangladesh: An empirical exploration and implications,"
Ecological Economics, Elsevier, vol. 93(C), pages 210-218.
- Mohammad Alauddin & Bharat R. Sharma, 2013. "Inter-district rice water productivity differences in Bangladesh: An empirical exploration and implications," Discussion Papers Series 517, School of Economics, University of Queensland, Australia.
- Molden, David & Oweis, T. Y. & Pasquale, S. & Kijne, Jacob W. & Hanjra, M. A. & Bindraban, P. S. & Bouman, Bas A. M. & Cook, S. & Erenstein, O. & Farahani, H. & Hachum, A. & Hoogeveen, J. & Mahoo, Hen, 2007.
"Pathways for increasing agricultural water productivity,"
Book Chapters,,
International Water Management Institute.
- Molden, David & Oweis, T. Y. & Pasquale, S. & Kijne, J. W. & Hanjra, M. A. & Bindraban, P. S. & Bouman, B. A. M. & Cook, S. & Erenstein, O. & Farahani, H. & Hachum, A. & Hoogeveen, J. & Mahoo, H. & Na, 2007. "Pathways for increasing agricultural water productivity," IWMI Books, Reports H040200, International Water Management Institute.
- Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
- Sarker, Khokan Kumer & Hossain, Akbar & Timsina, Jagadish & Biswas, Sujit Kumar & Malone, Sparkle L. & Alam, Md. Khairul & Loescher, Henry W. & Bazzaz, Mahfuz, 2020. "Alternate furrow irrigation can maintain grain yield and nutrient content, and increase crop water productivity in dry season maize in sub-tropical climate of South Asia," Agricultural Water Management, Elsevier, vol. 238(C).
- Mukherjee, A. & Sarkar, S. & Chakraborty, P.K., 2012. "Marginal analysis of water productivity function of tomato crop grown under different irrigation regimes and mulch managements," Agricultural Water Management, Elsevier, vol. 104(C), pages 121-127.
- Li, S.X. & Wang, Z.H. & Li, S.Q. & Gao, Y.J., 2015. "Effect of nitrogen fertilization under plastic mulched and non-plastic mulched conditions on water use by maize plants in dryland areas of China," Agricultural Water Management, Elsevier, vol. 162(C), pages 15-32.
- Zhou, Hong & Zhao, Wen zhi, 2019. "Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 286-302.
- Jalota, S.K. & Sood, Anil & Chahal, G.B.S. & Choudhury, B.U., 2006. "Crop water productivity of cotton (Gossypium hirsutum L.)-wheat (Triticum aestivum L.) system as influenced by deficit irrigation, soil texture and precipitation," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 137-146, July.
- Arora, V.K., 2006. "Application of a rice growth and water balance model in an irrigated semi-arid subtropical environment," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 51-57, May.
- Monaco, Federica & Sali, Guido, 2018. "How water amounts and management options drive Irrigation Water Productivity of rice. A multivariate analysis based on field experiment data," Agricultural Water Management, Elsevier, vol. 195(C), pages 47-57.
- Susanne Scheierling & David O. Treguer & James F. Booker, 2016. "Water Productivity in Agriculture: Looking for Water in the Agricultural Productivity and Efficiency Literature," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-33, September.
More about this item
Keywords
Rice-wheat system; Water deficit; Water table decline; Dynamics of water balance component in wheat;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:208:y:2018:i:c:p:261-267. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.