IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v258y2021ics0378377421004212.html
   My bibliography  Save this article

Precise soil water control using a negative pressure irrigation system to improve the water productivity of greenhouse watermelon

Author

Listed:
  • Zhang, Zhe
  • Liu, Shengyao
  • Jia, Songnan
  • Du, Fenghuan
  • Qi, Hao
  • Li, Jiaxi
  • Song, Xinyue
  • Zhao, Nan
  • Nie, Lanchun
  • Fan, Fengcui

Abstract

A negative pressure irrigation system (NPIS) was tested in 2016 and 2018 to determine the optimum soil water control conditions to improve water productivity (WP) and fruit quality for greenhouse-grown watermelon. Four levels of negative water pressure (-5, -10, -15 and -20 kPa) were imposed continuously to a clay-made emitter buried 5 cm under the soil surface during three major stages of greenhouse-grown watermelon (I-VE: vine extension, 32 days; II-FF: flowering and fruit setting, 16 days; III-FM: fruit expansion to maturity, 28 days), which created soil water conditions around the emitter being 96%, 80%, 72% and 63% of field capacity, respectively. Except for the testing stages with the four levels of water treatments, the water supply during other stages was all set with a constant -10 kPa water pressure. A traditional furrow irrigation treatment was included to assess the water-saving effects of the NPIS. The irrigation timing used for the furrow irrigation treatment was decided based on the soil water contents corresponding to the -15 kPa treatment under NPIS. The results indicated that with an increase in the negative pressure imposed on the emitters, the average daily evapotranspiration linearly decreased for all three stages, with the largest decrease occurring during III-FM, but the watermelon yield decreased more with the decline in the water supply during vine extension due to the after-effects of the reduced vine growth. Water stress improved watermelon quality by increasing sugar contents during II-FF and reduced acid contents during III-FM. Moderate water stress resulted in the highest water productivity (WP) as well as protein and total soluble solid contents in the melon during all three stages. Comparing the NPIS with furrow irrigation, the water use of the former was 18.3–31.2% less, the yield was 6.2–12.0% higher, and the WP was improved by 36.6–53.8%. The results indicated that NPIS is a water-saving irrigation system, and the water pressure of NPIS can be set at -5 to -10 kPa for vine extension and fruit expansion to maturity stages; and -10 to -15 kPa for flowering and fruit setting stage to achieve good quality, high WP and relatively stable yield for greenhouse-grown melon.

Suggested Citation

  • Zhang, Zhe & Liu, Shengyao & Jia, Songnan & Du, Fenghuan & Qi, Hao & Li, Jiaxi & Song, Xinyue & Zhao, Nan & Nie, Lanchun & Fan, Fengcui, 2021. "Precise soil water control using a negative pressure irrigation system to improve the water productivity of greenhouse watermelon," Agricultural Water Management, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:agiwat:v:258:y:2021:i:c:s0378377421004212
    DOI: 10.1016/j.agwat.2021.107144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421004212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yinkun & Wang, Lichun & Xue, Xuzhang & Guo, Wenzhong & Xu, Fan & Li, Youli & Sun, Weituo & Chen, Fei, 2017. "Comparison of drip fertigation and negative pressure fertigation on soil water dynamics and water use efficiency of greenhouse tomato grown in the North China Plain," Agricultural Water Management, Elsevier, vol. 184(C), pages 1-8.
    2. Ding, Risheng & Kang, Shaozhong & Zhang, Yanqun & Hao, Xinmei & Tong, Ling & Du, Taisheng, 2013. "Partitioning evapotranspiration into soil evaporation and transpiration using a modified dual crop coefficient model in irrigated maize field with ground-mulching," Agricultural Water Management, Elsevier, vol. 127(C), pages 85-96.
    3. Peragón, J.M. & Pérez-Latorre, F.J. & Delgado, A., 2017. "A GIS-based tool for integrated management of clogging risk and nitrogen fertilization in drip irrigation," Agricultural Water Management, Elsevier, vol. 184(C), pages 86-95.
    4. Miller, G.A. & Farahani, H.J. & Hassell, R.L. & Khalilian, A. & Adelberg, J.W. & Wells, C.E., 2014. "Field evaluation and performance of capacitance probes for automated drip irrigation of watermelons," Agricultural Water Management, Elsevier, vol. 131(C), pages 124-134.
    5. Wang, JiaJia & Long, HuaiYu & Huang, YuanFang & Wang, XiangLing & Cai, Bin & Liu, Wei, 2019. "Effects of different irrigation management parameters on cumulative water supply under negative pressure irrigation," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    6. Shukla, S. & Shrestha, N.K. & Jaber, F.H. & Srivastava, S. & Obreza, T.A. & Boman, B.J., 2014. "Evapotranspiration and crop coefficient for watermelon grown under plastic mulched conditions in sub-tropical Florida," Agricultural Water Management, Elsevier, vol. 132(C), pages 1-9.
    7. Wang, Qingming & Huo, Zailin & Zhang, Liudong & Wang, Jianhua & Zhao, Yong, 2016. "Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China," Agricultural Water Management, Elsevier, vol. 163(C), pages 125-138.
    8. Yang, Hui & Du, Taisheng & Qiu, Rangjian & Chen, Jinliang & Wang, Feng & Li, Yang & Wang, Chenxia & Gao, Lihong & Kang, Shaozhong, 2017. "Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 193-204.
    9. Kumar, Satyendra & Narjary, Bhaskar & Kumar, Kapil & Jat, H.S. & Kamra, S.K. & Yadav, R.K., 2019. "Developing soil matric potential based irrigation strategies of direct seeded rice for improving yield and water productivity," Agricultural Water Management, Elsevier, vol. 215(C), pages 8-15.
    10. Yang, Pingguo & Bian, Yun & Long, HuaiYu & Drohan, Patrick J., 2020. "Comparison of emitters of ceramic tube and polyvinyl formal under negative pressure irrigation on soil water use efficiency and nutrient uptake of crown daisy," Agricultural Water Management, Elsevier, vol. 228(C).
    11. Sharma, Harmandeep & Shukla, Manoj K. & Bosland, Paul W. & Steiner, Robert, 2017. "Soil moisture sensor calibration, actual evapotranspiration, and crop coefficients for drip irrigated greenhouse chile peppers," Agricultural Water Management, Elsevier, vol. 179(C), pages 81-91.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qunyan & Jia, Yifan & Pang, Zhongjun & Zhou, Jianbin & Scriber, Kevin Emmanuel & Liang, Bin & Chen, Zhujun, 2024. "Intelligent fertigation improves tomato yield and quality and water and nutrient use efficiency in solar greenhouse production," Agricultural Water Management, Elsevier, vol. 298(C).
    2. Zhang, Binbin & Yan, Sihui & Li, Bin & Wu, Shufang & Feng, Hao & Gao, Xiaodong & Song, Xiaolin & Siddique, Kadambot H.M., 2023. "Combining organic and chemical fertilizer plus water-saving system reduces environmental impacts and improves apple yield in rainfed apple orchards," Agricultural Water Management, Elsevier, vol. 288(C).
    3. Cai, Yaohui & Wu, Pute & Gao, Xiaodong & Zhu, Delan & Zhang, Lin & Dai, Zhiguang & Chau, Henry Wai & Zhao, Xining, 2022. "Subsurface irrigation with ceramic emitters: Evaluating soil water effects under multiple precipitation scenarios," Agricultural Water Management, Elsevier, vol. 272(C).
    4. Wang, Kechun & Wei, Qi & Xu, Junzeng & Cheng, Heng & Chen, Peng & Guo, Hang & Liao, Linxian & Zhao, Xuemei & Min, Zhihui, 2022. "Matching water requirements of Chinese chives planted at different distances apart from the line emitter under negative pressure irrigation subsurface system," Agricultural Water Management, Elsevier, vol. 274(C).
    5. Bao, Lei & Zhang, Saifeng & Liang, Xinyu & Wang, Peizhou & Guo, Yawen & Sun, Qinghao & Zhou, Jianbin & Chen, Zhujun, 2023. "Intelligent drip fertigation increases water and nutrient use efficiency of watermelon in greenhouse without compromising the yield," Agricultural Water Management, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shengping & Tan, Deshui & Wu, Xueping & Degré, Aurore & Long, Huaiyu & Zhang, Shuxiang & Lu, Jinjing & Gao, Lili & Zheng, Fengjun & Liu, Xiaotong & Liang, Guopeng, 2021. "Negative pressure irrigation increases vegetable water productivity and nitrogen use efficiency by improving soil water and NO3–-N distributions," Agricultural Water Management, Elsevier, vol. 251(C).
    2. Yi-Xuan Lu & Si-Ting Wang & Guan-Xin Yao & Jing Xu, 2023. "Green Total Factor Efficiency in Vegetable Production: A Comprehensive Ecological Analysis of China’s Practices," Agriculture, MDPI, vol. 13(10), pages 1-25, October.
    3. Yang, Pingguo & Bai, Jinjing & Yang, Miao & Ma, Erdeng & Yan, Min & Long, Huaiyu & Liu, Jian & Li, Lei, 2022. "Negative pressure irrigation for greenhouse crops in China: A review," Agricultural Water Management, Elsevier, vol. 264(C).
    4. Wang, Kechun & Wei, Qi & Xu, Junzeng & Cheng, Heng & Chen, Peng & Guo, Hang & Liao, Linxian & Zhao, Xuemei & Min, Zhihui, 2022. "Matching water requirements of Chinese chives planted at different distances apart from the line emitter under negative pressure irrigation subsurface system," Agricultural Water Management, Elsevier, vol. 274(C).
    5. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    6. Theodora Karanisa & Yasmine Achour & Ahmed Ouammi & Sami Sayadi, 2022. "Smart greenhouses as the path towards precision agriculture in the food-energy and water nexus: case study of Qatar," Environment Systems and Decisions, Springer, vol. 42(4), pages 521-546, December.
    7. Yang, Hui & Du, Taisheng & Mao, Xiaomin & Ding, Risheng & Shukla, Manoj K., 2019. "A comprehensive method of evaluating the impact of drought and salt stress on tomato growth and fruit quality based on EPIC growth model," Agricultural Water Management, Elsevier, vol. 213(C), pages 116-127.
    8. Feng, Yu & Cui, Ningbo & Du, Taisheng & Gong, Daozhi & Hu, Xiaotao & Zhao, Lu, 2017. "Response of sap flux and evapotranspiration to deficit irrigation of greenhouse pear-jujube trees in semi-arid northwest China," Agricultural Water Management, Elsevier, vol. 194(C), pages 1-12.
    9. Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
    10. Liao, Qi & Ding, Risheng & Du, Taisheng & Kang, Shaozhong & Tong, Ling & Gu, Shujie & Gao, Shaoyu & Gao, Jia, 2024. "Stomatal conductance modulates maize yield through water use and yield components under salinity stress," Agricultural Water Management, Elsevier, vol. 294(C).
    11. Feng, Yu & Gong, Daozhi & Mei, Xurong & Hao, Weiping & Tang, Dahua & Cui, Ningbo, 2017. "Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 191(C), pages 193-206.
    12. Muhammad, Tahir & Zhou, Bo & Puig-Bargu´es, Jaume & Ding, Can & Li, Shuqin & Manan, Irum & Zhou, Yunpeng & Liu, Zeyuan & Li, Yunkai, 2022. "Assessment of emitter clogging with multiple fouling and root intrusion in sub-surface drip irrigation during 5-year sugarcane growth," Agricultural Water Management, Elsevier, vol. 274(C).
    13. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).
    14. Shrestha, N.K. & Shukla, S., 2014. "Basal crop coefficients for vine and erect crops with plastic mulch in a sub-tropical region," Agricultural Water Management, Elsevier, vol. 143(C), pages 29-37.
    15. Bao-Li Miao & Ying Liu & Yu-Bing Fan & Xue-Jiao Niu & Xiu-Yun Jiang & Zeng Tang, 2023. "Optimization of Agricultural Resource Allocation among Crops: A Portfolio Model Analysis," Land, MDPI, vol. 12(10), pages 1-18, October.
    16. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    17. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    18. Jingwei Wang & Yuan Li & Wenquan Niu, 2020. "Deficit Alternate Drip Irrigation Increased Root-Soil-Plant Interaction, Tomato Yield, and Quality," IJERPH, MDPI, vol. 17(3), pages 1-18, January.
    19. Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
    20. França, Ana Carolina Ferreira & Coelho, Rubens Duarte & da Silva Gundim, Alice & de Oliveira Costa, Jéfferson & Quiloango-Chimarro, Carlos Alberto, 2024. "Effects of different irrigation scheduling methods on physiology, yield, and irrigation water productivity of soybean varieties," Agricultural Water Management, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:258:y:2021:i:c:s0378377421004212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.