IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v170y2022i1d10.1007_s10584-021-03254-2.html
   My bibliography  Save this article

Addressing uncertainty and bias in land use, land use change, and forestry greenhouse gas inventories

Author

Listed:
  • Emily McGlynn

    (University of California, Davis)

  • Serena Li

    (ClimateWorks Foundation)

  • Michael Berger

    (California Environmental Associates)

  • Meredith Amend

    (Industrial Economics, Incorporated)

  • Kandice Harper

    (ClimateWorks Foundation)

Abstract

National greenhouse gas inventories (NGHGIs) will play an increasingly important role in tracking country progress against United Nations (UN) Paris Agreement commitments. Yet uncertainty in land use, land use change, and forestry (LULUCF) NGHGHI estimates may undermine international confidence in emission reduction claims, particularly for countries that expect forests and agriculture to contribute large near-term GHG reductions. In this paper, we propose an analytical framework for implementing the uncertainty provisions of the UN Paris Agreement Enhanced Transparency Framework, with a view to identifying the largest sources of LULUCF NGHGI uncertainty and prioritizing methodological improvements. Using the USA as a case study, we identify and attribute uncertainty across all US NGHGI LULUCF “uncertainty elements” (inputs, parameters, models, and instances of plot-based sampling) and provide GHG flux estimates for omitted inventory categories. The largest sources of uncertainty are distributed across LULUCF inventory categories, underlining the importance of sector-wide analysis: forestry (tree biomass sampling error; tree volume and specific gravity allometric parameters; soil carbon model), cropland and grassland (DayCent model structure and inputs), and settlement (urban tree gross to net carbon sequestration ratio) elements contribute over 90% of uncertainty. Net emissions of 123 MMT CO2e could be omitted from the US NGHGI, including Alaskan grassland and wetland soil carbon stock change (90.4 MMT CO2), urban mineral soil carbon stock change (34.7 MMT CO2), and federal cropland and grassland N2O (21.8 MMT CO2e). We explain how these findings and other ongoing research can support improved LULUCF monitoring and transparency.

Suggested Citation

  • Emily McGlynn & Serena Li & Michael Berger & Meredith Amend & Kandice Harper, 2022. "Addressing uncertainty and bias in land use, land use change, and forestry greenhouse gas inventories," Climatic Change, Springer, vol. 170(1), pages 1-25, January.
  • Handle: RePEc:spr:climat:v:170:y:2022:i:1:d:10.1007_s10584-021-03254-2
    DOI: 10.1007/s10584-021-03254-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03254-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03254-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephanie Roe & Charlotte Streck & Michael Obersteiner & Stefan Frank & Bronson Griscom & Laurent Drouet & Oliver Fricko & Mykola Gusti & Nancy Harris & Tomoko Hasegawa & Zeke Hausfather & Petr Havlík, 2019. "Contribution of the land sector to a 1.5 °C world," Nature Climate Change, Nature, vol. 9(11), pages 817-828, November.
    2. Matthias Jonas & Gregg Marland & Volker Krey & Fabian Wagner & Zbigniew Nahorski, 2014. "Uncertainty in an emissions-constrained world," Climatic Change, Springer, vol. 124(3), pages 459-476, June.
    3. Giacomo Grassi & Jo House & Werner A. Kurz & Alessandro Cescatti & Richard A. Houghton & Glen P. Peters & Maria J. Sanz & Raul Abad Viñas & Ramdane Alkama & Almut Arneth & Alberte Bondeau & Frank Dent, 2018. "Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks," Nature Climate Change, Nature, vol. 8(10), pages 914-920, October.
    4. Giacomo Grassi & Jo House & Frank Dentener & Sandro Federici & Michel den Elzen & Jim Penman, 2017. "The key role of forests in meeting climate targets requires science for credible mitigation," Nature Climate Change, Nature, vol. 7(3), pages 220-226, March.
    5. Karl-Heinz Erb & Thomas Kastner & Sebastiaan Luyssaert & Richard A. Houghton & Tobias Kuemmerle & Pontus Olofsson & Helmut Haberl, 2013. "Bias in the attribution of forest carbon sinks," Nature Climate Change, Nature, vol. 3(10), pages 854-856, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radu Lucian Pânzaru & Daniela Firoiu & George H. Ionescu & Andi Ciobanu & Dragoș Mihai Medelete & Ramona Pîrvu, 2023. "Organic Agriculture in the Context of 2030 Agenda Implementation in European Union Countries," Sustainability, MDPI, vol. 15(13), pages 1-31, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongge Zhu & Yingli Cai & Hong Lin & Yuchen Tian, 2022. "Impacts of Cross-Sectoral Climate Policy on Forest Carbon Sinks and Their Spatial Spillover: Evidence from Chinese Provincial Panel Data," IJERPH, MDPI, vol. 19(21), pages 1-21, November.
    2. Eric C. Davis & Brent Sohngen & David J. Lewis, 2022. "The effect of carbon fertilization on naturally regenerated and planted US forests," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. M.J. Mace & Claire L. Fyson & Michiel Schaeffer & William L. Hare, 2021. "Large‐Scale Carbon Dioxide Removal to Meet the 1.5°C Limit: Key Governance Gaps, Challenges and Priority Responses," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 67-81, April.
    4. Xin Zhao & Bryan K. Mignone & Marshall A. Wise & Haewon C. McJeon, 2024. "Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Andrea, Veronika, 2022. "Mediterranean forest policy beyond the Paris Climate Agreement," Land Use Policy, Elsevier, vol. 112(C).
    6. Chaozhu Li & Xiaoliang Li & Wei Jia, 2022. "Non-Farm Employment Experience, Risk Preferences, and Low-Carbon Agricultural Technology Adoption: Evidence from 1843 Grain Farmers in 14 Provinces in China," Agriculture, MDPI, vol. 13(1), pages 1-16, December.
    7. Rong Li & Brent Sohngen & Xiaohui Tian, 2022. "Efficiency of forest carbon policies at intensive and extensive margins," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1243-1267, August.
    8. Jung, Suhyun & Hajjar, Reem, 2023. "The livelihood impacts of transnational aid for climate change mitigation: Evidence from Ghana," Forest Policy and Economics, Elsevier, vol. 155(C).
    9. Kooten, G. Cornelis Van, 2022. "The Impact of Carbon on Optimal Forest Rotation Ages: An Application to Coastal Forests in British Columbia," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322612, Agricultural and Applied Economics Association.
    10. Koasidis, Konstantinos & Marinakis, Vangelis & Nikas, Alexandros & Chira, Katerina & Flamos, Alexandros & Doukas, Haris, 2022. "Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece," Energy Policy, Elsevier, vol. 161(C).
    11. Renata Dagiliūtė & Vaiva Kazanavičiūtė, 2024. "Impact of Land-Use Changes on Climate Change Mitigation Goals: The Case of Lithuania," Land, MDPI, vol. 13(2), pages 1-16, January.
    12. Vera, Ivan & Wicke, Birka & Lamers, Patrick & Cowie, Annette & Repo, Anna & Heukels, Bas & Zumpf, Colleen & Styles, David & Parish, Esther & Cherubini, Francesco & Berndes, Göran & Jager, Henriette & , 2022. "Land use for bioenergy: Synergies and trade-offs between sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Shinbrot, Xoco A. & Holmes, Ignacia & Gauthier, Madeleine & Tschakert, Petra & Wilkins, Zoë & Baragón, Lydia & Opúa, Berta & Potvin, Catherine, 2022. "Natural and financial impacts of payments for forest carbon offset: A 14 year-long case study in an indigenous community in Panama," Land Use Policy, Elsevier, vol. 115(C).
    14. Rosa, Lorenzo & Mazzotti, Marco, 2022. "Potential for hydrogen production from sustainable biomass with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    15. Peter Woods Ellis & Aaron Marr Page & Stephen Wood & Joseph Fargione & Yuta J. Masuda & Vanessa Carrasco Denney & Campbell Moore & Timm Kroeger & Bronson Griscom & Jonathan Sanderman & Tyson Atleo & R, 2024. "The principles of natural climate solutions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Daigneault, Adam J. & Sohngen, Brent L. & Sedjo, Roger, 2020. "Carbon and market effects of U.S. forest taxation policy," Ecological Economics, Elsevier, vol. 178(C).
    17. Michel G. J. Elzen & Ioannis Dafnomilis & Nicklas Forsell & Panagiotis Fragkos & Kostas Fragkiadakis & Niklas Höhne & Takeshi Kuramochi & Leonardo Nascimento & Mark Roelfsema & Heleen Soest & Frank Sp, 2022. "Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-29, August.
    18. Suchocka, Marzena & Heciak, Jakub & Błaszczyk, Magdalena & Adamczyk, Joanna & Gaworski, Marek & Gawłowska, Agnieszka & Mojski, Jacek & Kalaji, Hazem M. & Kais, Karolina & Kosno-Jończy, Joanna & Heciak, 2023. "Comparison of Ecosystem Services and Replacement Value calculations performed for urban trees," Ecosystem Services, Elsevier, vol. 63(C).
    19. Khrystyna Boychuk & Rostyslav Bun, 2014. "Regional spatial inventories (cadastres) of GHG emissions in the Energy sector: Accounting for uncertainty," Climatic Change, Springer, vol. 124(3), pages 561-574, June.
    20. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:170:y:2022:i:1:d:10.1007_s10584-021-03254-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.