IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v169y2021i3d10.1007_s10584-021-03276-w.html
   My bibliography  Save this article

Warm winters challenge the cultivation of temperate species in South America—a spatial analysis of chill accumulation

Author

Listed:
  • Eduardo Fernandez

    (University of Bonn)

  • Lars Caspersen

    (University of Bonn)

  • Ilja Illert

    (University of Bonn)

  • Eike Luedeling

    (University of Bonn)

Abstract

Winter chill accumulation plays a crucial role in determining the moment of bud burst in temperate fruit and nut trees, and insufficient chill can greatly limit yield potentials. To assess future cultivation options for such species in South America, we estimated winter chill through a spatial analysis. We used historical data (1980–2017) from 158 weather stations to calibrate a weather generator and produce temperature data for 10 historical and 60 future scenarios. We computed Safe Winter Chill (SWC, corresponding to the 10th quantile of a chill distribution) for the period 1980–2017 and for all historical and future weather scenarios and developed a framework to interpolate SWC for the continent using the Kriging method. To improve the interpolation, we applied a 3D correction model based on two co-variables (means of daily temperature extremes in July). Our results suggest important chill declines in southern Brazil and central Chile. By 2050 under the global warming scenario RCP4.5 (Representative Concentration Pathway), absolute SWC in these regions may reach a median of 18.7 and 39.6 Chill Portions (CP), respectively. Projections are most alarming for a strong global warming scenario (RCP8.5). In southern South America, adequate SWC levels of about 60 CP may be expected even under the RCP8.5 scenario. Our results highlight the need for climate change adaptation measures to secure temperate fruit production in important growing regions of South America. The procedure we developed may help farmers and practitioners across South America estimate future SWC to adapt their orchards to future challenges.

Suggested Citation

  • Eduardo Fernandez & Lars Caspersen & Ilja Illert & Eike Luedeling, 2021. "Warm winters challenge the cultivation of temperate species in South America—a spatial analysis of chill accumulation," Climatic Change, Springer, vol. 169(3), pages 1-19, December.
  • Handle: RePEc:spr:climat:v:169:y:2021:i:3:d:10.1007_s10584-021-03276-w
    DOI: 10.1007/s10584-021-03276-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03276-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03276-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haïfa Benmoussa & Eike Luedeling & Mohamed Ghrab & Mehdi Ben Mimoun, 2020. "Severe winter chill decline impacts Tunisian fruit and nut orchards," Climatic Change, Springer, vol. 162(3), pages 1249-1267, October.
    2. Andreas Buerkert & Eduardo Fernandez & Beke Tietjen & Eike Luedeling, 2020. "Revisiting climate change effects on winter chill in mountain oases of northern Oman," Climatic Change, Springer, vol. 162(3), pages 1399-1417, October.
    3. Evan H Girvetz & Chris Zganjar & George T Raber & Edwin P Maurer & Peter Kareiva & Joshua J Lawler, 2009. "Applied Climate-Change Analysis: The Climate Wizard Tool," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-19, December.
    4. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    5. R. Darbyshire & P. Measham & I. Goodwin, 2016. "A crop and cultivar-specific approach to assess future winter chill risk for fruit and nut trees," Climatic Change, Springer, vol. 137(3), pages 541-556, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossein Noorazar & Lee Kalcsits & Vincent P. Jones & Matthew S. Jones & Kirti Rajagopalan, 2022. "Climate change and chill accumulation: implications for tree fruit production in cold-winter regions," Climatic Change, Springer, vol. 171(3), pages 1-16, April.
    2. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    3. Pascalle Smith & Georg Heinrich & Martin Suklitsch & Andreas Gobiet & Markus Stoffel & Jürg Fuhrer, 2014. "Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change," Climatic Change, Springer, vol. 127(3), pages 521-534, December.
    4. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    5. Gong, Ziqian & Baker, Justin S. & Wade, Christopher M. & Havlík, Petr, 2024. "Irrigation intensification in U.S. agriculture under climate change – an adaptation mechanism or trade-induced response?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343581, Agricultural and Applied Economics Association.
    6. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    7. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    8. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    10. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    11. Hamdi-Cherif, Meriem & Waisman, Henri & Guivarch, Céline & Hourcade, Jean-Charles, 2012. "Mitigation costs in second-best economies: time profile of emission reductions and sequencing of accompanying measures," Conference papers 332206, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    13. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    14. Jung-A Yang & Sooyoul Kim & Sangyoung Son & Nobuhito Mori & Hajime Mase, 2020. "Assessment of uncertainties in projecting future changes to extreme storm surge height depending on future SST and greenhouse gas concentration scenarios," Climatic Change, Springer, vol. 162(2), pages 425-442, September.
    15. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    16. Guo, Jinggang & Prestemon, Jeffrey & Johnston, Craig, 2023. "Forest market outlook in the Southern United States," Forest Policy and Economics, Elsevier, vol. 157(C).
    17. Fahad Saeed & Mansour Almazroui & Nazrul Islam & Mariam Saleh Khan, 2017. "Intensification of future heat waves in Pakistan: a study using CORDEX regional climate models ensemble," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1635-1647, July.
    18. Zhongwen Xu & Liming Yao & Yin Long, 2020. "Climatic Impact Toward Regional Water Allocation and Transfer Strategies from Economic, Social and Environmental Perspectives," Land, MDPI, vol. 9(11), pages 1-17, November.
    19. Vizinho, André & Avelar, David & Fonseca, Ana Lúcia & Carvalho, Silvia & Sucena-Paiva, Leonor & Pinho, Pedro & Nunes, Alice & Branquinho, Cristina & Vasconcelos, Ana Cátia & Santos, Filipe Duarte & Ro, 2021. "Framing the application of Adaptation Pathways for agroforestry in Mediterranean drylands," Land Use Policy, Elsevier, vol. 104(C).
    20. Asian Development Bank (ADB) & Asian Development Bank (ADB) & Asian Development Bank (ADB) & Asian Development Bank (ADB), 2014. "Climate Proofing ADB's Investments in the Transport Sector: Experiences and Opportunities," ADB Reports RPT146741-2, Asian Development Bank (ADB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:169:y:2021:i:3:d:10.1007_s10584-021-03276-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.