IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v165y2021i1d10.1007_s10584-021-02979-4.html
   My bibliography  Save this article

Climate change impacts and strategies for adaptation for water resource management in Indiana

Author

Listed:
  • Keith A. Cherkauer

    (Purdue University)

  • Laura C. Bowling

    (Purdue University)

  • Kyuhyun Byun

    (University of Notre Dame
    Pacific Northwest National Laboratory)

  • Indrajeet Chaubey

    (Purdue University
    University of Connecticut)

  • Natalie Chin

    (Purdue University)

  • Darren L. Ficklin

    (Indiana University)

  • Alan F. Hamlet

    (University of Notre Dame)

  • Stephen J. Kines

    (Purdue University)

  • Charlotte I. Lee

    (Purdue University)

  • Ram Neupane

    (Indiana University
    Texas Water Development Board)

  • Garett W. Pignotti

    (Purdue University)

  • Sanoar Rahman

    (Purdue University)

  • Sarmistha Singh

    (Indian Institute of Technology Palakkad)

  • Pandara Valappil Femeena

    (Penn State University)

  • Tanja N. Williamson

    (U. S. Geological Survey, Ohio-Kentucky-Indiana Water Science Center)

Abstract

Changes to water resources are critical to all sectors of the economy. Climate change will affect the timing and quantity of water available in the environment as well as have an adverse effect on the quality of that water. Floods, droughts, and changing patterns of water scarcity—when water is not available in sufficient enough quantities or of a suitable quality at the right time to fulfill demand—are all critical factors when considering how and where Indiana will be able to economically develop in the future. Management of water resources will become even more important as different sectors try to minimize the risk of water scarcity in the face of increasing climate variability. This paper focuses on observed changes to Indiana’s water resources and how the availability and quality of those resources are likely to change in the face of future climate. Generally, Indiana is becoming wetter but with the projected increase coming primarily in the winter and spring. Summer water use will increase the likelihood of water shortages and the need for improved water management. In particular, Indiana may benefit from investment in methods to increase short-term storage of water—retaining more of the overabundance from winter and spring to relieve summer shortages.

Suggested Citation

  • Keith A. Cherkauer & Laura C. Bowling & Kyuhyun Byun & Indrajeet Chaubey & Natalie Chin & Darren L. Ficklin & Alan F. Hamlet & Stephen J. Kines & Charlotte I. Lee & Ram Neupane & Garett W. Pignotti & , 2021. "Climate change impacts and strategies for adaptation for water resource management in Indiana," Climatic Change, Springer, vol. 165(1), pages 1-20, March.
  • Handle: RePEc:spr:climat:v:165:y:2021:i:1:d:10.1007_s10584-021-02979-4
    DOI: 10.1007/s10584-021-02979-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-02979-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-02979-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iman Mallakpour & Gabriele Villarini, 2015. "The changing nature of flooding across the central United States," Nature Climate Change, Nature, vol. 5(3), pages 250-254, March.
    2. Sadia A. Jame & Laura C. Bowling, 2020. "Groundwater Doctrine and Water Withdrawals in the United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4037-4052, October.
    3. David N Wear & Jeffrey P Prestemon, 2019. "Spatiotemporal downscaling of global population and income scenarios for the United States," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-19, July.
    4. Laura C. Bowling & Keith A. Cherkauer & Charlotte I. Lee & Janna L. Beckerman & Sylvie Brouder & Jonathan R. Buzan & Otto C. Doering & Jeffrey S. Dukes & Paul D. Ebner & Jane R. Frankenberger & Benjam, 2020. "Agricultural impacts of climate change in Indiana and potential adaptations," Climatic Change, Springer, vol. 163(4), pages 2005-2027, December.
    5. Gary S. Corner, 2012. "The drought's impact on Eighth District agricultural conditions," Central Banker, Federal Reserve Bank of St. Louis, issue Fall.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathon Day & Natalie Chin & Sandra Sydnor & Melissa Widhalm & Kalim U. Shah & Leslie Dorworth, 2021. "Implications of climate change for tourism and outdoor recreation: an Indiana, USA, case study," Climatic Change, Springer, vol. 169(3), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy Ivancic & Stephen Shaw, 2015. "Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge," Climatic Change, Springer, vol. 133(4), pages 681-693, December.
    2. Clyde E. Goulden & Jerry Mead & Richard Horwitz & Munhtuya Goulden & Banzragch Nandintsetseg & Sabrina McCormick & Bazartseren Boldgiv & Peter S. Petraitis, 2016. "Interviews of Mongolian herders and high resolution precipitation data reveal an increase in short heavy rains and thunderstorm activity in semi-arid Mongolia," Climatic Change, Springer, vol. 136(2), pages 281-295, May.
    3. Jing Liu & Thomas Hertel & Noah Diffenbaugh & Michael Delgado & Moetasim Ashfaq, 2015. "Future property damage from flooding: sensitivities to economy and climate change," Climatic Change, Springer, vol. 132(4), pages 741-749, October.
    4. Koffi Badou-Jeremie Kouame & Mary C. Savin & Gulab Rangani & Thomas R. Butts & Matthew B. Bertucci & Nilda Roma-Burgos, 2022. "Transpiration Responses of Herbicide-Resistant and -Susceptible Palmer Amaranth ( Amaranthus palmeri (S.) Wats.) to Progressively Drying Soil," Agriculture, MDPI, vol. 12(3), pages 1-11, February.
    5. Yang, Wei & Feng, Gary & Adeli, Ardeshir & Kersebaum, K.C. & Jenkins, Johnie N. & Li, Pinfang, 2019. "Long-term effect of cover crop on rainwater balance components and use efficiency in the no-tilled and rainfed corn and soybean rotation system," Agricultural Water Management, Elsevier, vol. 219(C), pages 27-39.
    6. Evan B Brooks & John W Coulston & Kurt H Riitters & David N Wear, 2020. "Using a hybrid demand-allocation algorithm to enable distributional analysis of land use change patterns," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-21, October.
    7. Eric E. Calloway & Nadine B. Nugent & Katie L. Stern & Ashley Mueller & Amy L. Yaroch, 2022. "Lessons Learned from the 2019 Nebraska Floods: Implications for Emergency Management, Mass Care, and Food Security," IJERPH, MDPI, vol. 19(18), pages 1-17, September.
    8. Sloan, Brandon P. & Basu, Nandita B. & Mantilla, Ricardo, 2016. "Hydrologic impacts of subsurface drainage at the field scale: Climate, landscape and anthropogenic controls," Agricultural Water Management, Elsevier, vol. 165(C), pages 1-10.
    9. Basche, Andrea D. & Kaspar, Thomas C. & Archontoulis, Sotirios V. & Jaynes, Dan B. & Sauer, Thomas J. & Parkin, Timothy B. & Miguez, Fernando E., 2016. "Soil water improvements with the long-term use of a winter rye cover crop," Agricultural Water Management, Elsevier, vol. 172(C), pages 40-50.
    10. Gabrielle Linscott & Andrea Rishworth & Brian King & Mikael P. Hiestand, 2022. "Uneven experiences of urban flooding: examining the 2010 Nashville flood," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 629-653, January.
    11. Rebecca M Diehl & Jesse D Gourevitch & Stephanie Drago & Beverley C Wemple, 2021. "Improving flood hazard datasets using a low-complexity, probabilistic floodplain mapping approach," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-20, March.
    12. Wear, David N. & Warziniack, Travis & O’Dea, Claire & Coulston, John, 2024. "Changing Hazards, Exposure, and Vulnerability in the Conterminous United States, 2020–2070," RFF Working Paper Series 24-21, Resources for the Future.
    13. Qianqian Zhou & Jiongheng Su & Guoyong Leng & Jian Peng, 2019. "The Role of Hazard and Vulnerability in Modulating Economic Damages of Inland Floods in the United States Using a Survey-Based Dataset," Sustainability, MDPI, vol. 11(13), pages 1-12, July.
    14. Kashif Haleem & Afed Ullah Khan & Jehanzeb Khan & Abdulnoor A. J. Ghanim & Ahmed M. Al-Areeq, 2023. "Evaluating Future Streamflow Patterns under SSP245 Scenarios: Insights from CMIP6," Sustainability, MDPI, vol. 15(22), pages 1-21, November.
    15. Henderson, Jesse D. & Abt, Robert C. & Abt, Karen L., 2024. "Forest carbon under increasing product demand and land use change in the US Southeast," Forest Policy and Economics, Elsevier, vol. 167(C).
    16. Tyas Mutiara Basuki & Hunggul Yudono Setio Hadi Nugroho & Yonky Indrajaya & Irfan Budi Pramono & Nunung Puji Nugroho & Agung Budi Supangat & Dewi Retna Indrawati & Endang Savitri & Nining Wahyuningrum, 2022. "Improvement of Integrated Watershed Management in Indonesia for Mitigation and Adaptation to Climate Change: A Review," Sustainability, MDPI, vol. 14(16), pages 1-41, August.
    17. Shubham M. Jibhakate & P. V. Timbadiya & P. L. Patel, 2023. "Flood hazard assessment for the coastal urban floodplain using 1D/2D coupled hydrodynamic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1557-1590, March.
    18. Koch, Johannes & Leimbach, Marian, 2023. "SSP economic growth projections: Major changes of key drivers in integrated assessment modelling," Ecological Economics, Elsevier, vol. 206(C).
    19. Huong Nguyen & Marcus Randall & Andrew Lewis, 2024. "Factors Affecting Crop Prices in the Context of Climate Change—A Review," Agriculture, MDPI, vol. 14(1), pages 1-17, January.
    20. Ray, Srabashi & Hertel, Thomas, 2022. "Assessing The Impact Of Conservation Policies On Rural Communities: The Role Of Labor Markets," Conference papers 333401, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:165:y:2021:i:1:d:10.1007_s10584-021-02979-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.