IDEAS home Printed from https://ideas.repec.org/a/eee/forpol/v167y2024ics1389934124001503.html
   My bibliography  Save this article

Forest carbon under increasing product demand and land use change in the US Southeast

Author

Listed:
  • Henderson, Jesse D.
  • Abt, Robert C.
  • Abt, Karen L.

Abstract

Increased demands for timber products remove carbon from forests, however previous literature has suggested that higher resulting prices could spur forestland expansion, ameliorating the forest carbon impacts. We examine the impacts on forest carbon from harvest increases with an empirical forest sector model, coupled with an econometric model of endogenous land use change that differentiates the impacts of population, income, and pine plantation rents among forest management types and non-forest land uses. We explore the sensitivity of forest area and carbon to a suite of scenarios by varying timber product demands combined with a sensitivity analysis on pine plantation responses to pine plantation rents. The econometric results show that pine plantation rents lead to increases in pine plantation area and that all non-urban land uses are negatively related to both per capita income and population. Scenario projections show that (1) higher pulpwood demands driven by wood pellets lead to lower forest carbon outcomes; (2) higher sawtimber demands exacerbate the known cycles in sawtimber prices and result in corresponding cycles in forest area and carbon. All scenarios show increases in forest carbon over time, though some scenarios increase faster than others. Within the study period, the highest forest carbon level is achieved by the high sawtimber demand and low pulpwood demand scenario. Long term growth cycles over the course of the projection period, however, lead to alternating forest carbon outcomes, indicating that conclusions about forest carbon depend on the projection length.

Suggested Citation

  • Henderson, Jesse D. & Abt, Robert C. & Abt, Karen L., 2024. "Forest carbon under increasing product demand and land use change in the US Southeast," Forest Policy and Economics, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:forpol:v:167:y:2024:i:c:s1389934124001503
    DOI: 10.1016/j.forpol.2024.103296
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1389934124001503
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.forpol.2024.103296?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Jinggang & Prestemon, Jeffrey & Johnston, Craig, 2023. "Forest market outlook in the Southern United States," Forest Policy and Economics, Elsevier, vol. 157(C).
    2. Lubowski, Ruben N. & Plantinga, Andrew J. & Stavins, Robert N., 2006. "Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 135-152, March.
    3. Sohngen, Brent & Mendelsohn, Robert & Sedjo, Roger A., 2001. "A Global Model Of Climate Change Impacts On Timber Markets," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 26(2), pages 1-18, December.
    4. Galik, Christopher S. & Abt, Robert C. & Latta, Gregory & Méley, Andréanne & Henderson, Jesse D., 2016. "Meeting renewable energy and land use objectives through public–private biomass supply partnerships," Applied Energy, Elsevier, vol. 172(C), pages 264-274.
    5. Nagubadi, Rao V. & Zhang, Daowei, 2005. "Determinants of Timberland Use by Ownership and Forest Type in Alabama and Georgia," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 37(1), pages 173-186, April.
    6. Christopher Mihiar & David J. Lewis, 2021. "Climate, Adaptation, and the Value of Forestland: A National Ricardian Analysis of the United States," Land Economics, University of Wisconsin Press, vol. 97(4), pages 911-932.
    7. Ian Hardie & Peter Parks & Peter Gottleib & David Wear, 2000. "Responsiveness of Rural and Urban Land Uses to Land Rent Determinants in the U.S. South," Land Economics, University of Wisconsin Press, vol. 76(4), pages 659-673.
    8. Daigneault, Adam & Favero, Alice, 2021. "Global forest management, carbon sequestration and bioenergy supply under alternative shared socioeconomic pathways," Land Use Policy, Elsevier, vol. 103(C).
    9. Henderson, Jesse D. & Parajuli, Rajan & Abt, Robert C., 2020. "Biological and market responses of pine forests in the US Southeast to carbon fertilization," Ecological Economics, Elsevier, vol. 169(C).
    10. Henningsen, Arne & Hamann, Jeff D., 2007. "systemfit: A Package for Estimating Systems of Simultaneous Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i04).
    11. David N Wear & Jeffrey P Prestemon, 2019. "Spatiotemporal downscaling of global population and income scenarios for the United States," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-19, July.
    12. Daniel D. Richter & Daniel Markewitz & Susan E. Trumbore & Carol G. Wells, 1999. "Rapid accumulation and turnover of soil carbon in a re-establishing forest," Nature, Nature, vol. 400(6739), pages 56-58, July.
    13. Nagubadi, Rao V. & Zhang, Daowei, 2005. "Determinants of Timberland Use by Ownership and Forest Type in Alabama and Georgia," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 37(01), pages 1-14, April.
    14. William H. Schlesinger & John Lichter, 2001. "Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2," Nature, Nature, vol. 411(6836), pages 466-469, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mutandwa, Edward & Grala, Robert K. & Grebner, Donald L., 2016. "Family forest land availability for the production of ecosystem services in Mississippi, United States," Forest Policy and Economics, Elsevier, vol. 73(C), pages 18-24.
    2. Rossi, David J. & Baker, Justin S. & Abt, Robert C., 2023. "Quantifying additionality thresholds for forest carbon offsets in Mississippi pine pulpwood markets," Forest Policy and Economics, Elsevier, vol. 156(C).
    3. Maksym Polyakov & Daowei Zhang, 2008. "Property Tax Policy and Land-Use Change," Land Economics, University of Wisconsin Press, vol. 84(3), pages 396-408.
    4. Zhang, Daowei & Nagubadi, Rao V., 2005. "The influence of urbanization on timberland use by forest type in the Southern United States," Forest Policy and Economics, Elsevier, vol. 7(5), pages 721-731, August.
    5. Baker, Justin S. & Van Houtven, George & Phelan, Jennifer & Latta, Gregory & Clark, Christopher M. & Austin, Kemen G. & Sodiya, Olakunle E. & Ohrel, Sara B. & Buckley, John & Gentile, Lauren E. & Mart, 2023. "Projecting U.S. forest management, market, and carbon sequestration responses to a high-impact climate scenario," Forest Policy and Economics, Elsevier, vol. 147(C).
    6. Zhao, Jianheng & Daigneault, Adam & Weiskittel, Aaron & Wei, Xinyuan, 2023. "Climate and socioeconomic impacts on Maine's forests under alternative future pathways," Ecological Economics, Elsevier, vol. 214(C).
    7. Baker, J.S. & Wade, C.M. & Sohngen, B.L. & Ohrel, S. & Fawcett, A.A., 2019. "Potential complementarity between forest carbon sequestration incentives and biomass energy expansion," Energy Policy, Elsevier, vol. 126(C), pages 391-401.
    8. Baker, Justin S. & Rossi, David & Abt, Robert, 2022. "Quantifying Additionality Thresholds for Forest Carbon Offsets," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322510, Agricultural and Applied Economics Association.
    9. Sandler, Austin M. & Rashford, Benjamin S., 2018. "Misclassification error in satellite imagery data: Implications for empirical land-use models," Land Use Policy, Elsevier, vol. 75(C), pages 530-537.
    10. Ben Ayara, Amine & Cho, Seong-Hoon & Clark, Christopher & Lambert, Dayton & Armsworth, Paul, 2016. "Spatial and Temporal Variation in the Optimal Provision of Forest-based Carbon Storage," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236005, Agricultural and Applied Economics Association.
    11. Favero, Alice & Sohngen, Brent & Hamilton, W. Parker, 2022. "Climate change and timber in Latin America: Will the forestry sector flourish under climate change?," Forest Policy and Economics, Elsevier, vol. 135(C).
    12. Kuluppuarachchi, Mahesha K. & Sun, Changyou & Gordon, Jason S. & Grebner, Donald L. & Munn, Ian A. & Yang, Jia, 2021. "The length and determinants of forestland ownerships in Mississippi from 1999 to 2019," Forest Policy and Economics, Elsevier, vol. 129(C).
    13. Johnson, Kelsey K. & Lewis, David J., 2024. "Weather variability risks slow climate adaptation: An empirical analysis of forestry," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    14. David H. Bernstein & Christopher F. Parmeter, 2017. "Returns to Scale in Electricity Generation: Revisited and Replicated," Working Papers 2017-08, University of Miami, Department of Economics.
    15. Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
    16. Cho, Seong-Hoon & Kim, Heeho & Roberts, Roland K. & Kim, Taeyoung & Lee, Daegoon, 2014. "Effects of changes in forestland ownership on deforestation and urbanization and the resulting effects on greenhouse gas emissions," Journal of Forest Economics, Elsevier, vol. 20(1), pages 93-109.
    17. Sun, Changyou, 2015. "An investigation of China's import demand for wood pulp and wastepaper," Forest Policy and Economics, Elsevier, vol. 61(C), pages 113-121.
    18. Jon Anson, 2010. "Beyond Material Explanations: Family Solidarity and Mortality, a Small Area‐level Analysis," Population and Development Review, The Population Council, Inc., vol. 36(1), pages 27-45, March.
    19. Bielsa, Jorge & Cazcarro, Ignacio & Sancho, Yolanda, 2011. "Integration of hydrological and economic approaches to water and land management in Mediterranean climates: an initial case study in agriculture," MPRA Paper 36445, University Library of Munich, Germany.
    20. Sims, Katharine R.E. & Alix-Garcia, Jennifer M., 2017. "Parks versus PES: Evaluating direct and incentive-based land conservation in Mexico," Journal of Environmental Economics and Management, Elsevier, vol. 86(C), pages 8-28.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:forpol:v:167:y:2024:i:c:s1389934124001503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/forpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.