IDEAS home Printed from https://ideas.repec.org/p/rff/dpaper/dp-24-21.html
   My bibliography  Save this paper

Changing Hazards, Exposure, and Vulnerability in the Conterminous United States, 2020–2070

Author

Listed:
  • Wear, David N.

    (Resources for the Future)

  • Warziniack, Travis
  • O’Dea, Claire
  • Coulston, John

Abstract

Climate change reshapes natural resource systems and results in increased likelihood of wildfire, water scarcity, and heat stress, along with other adverse outcomes that define potential harm across a broad spectrum of locales in the United States. We evaluate 50-year, multiple-scenario projections of resource hazards and population change from the USDA Forest Service 2020 Resources Planning Act Assessment to identify areas of concern based on hazard exposure and social vulnerability criteria and to evaluate implications for climate adaptation and risk mitigation planning. We project how and where hazard exposure may change over the next 50 years and decompose these changes into the portion driven by climate changes and the portion driven by population changes—both of which prove consequential. Water shortage projections show little change in spatial distribution but strong growth in the intensity of anticipated droughts. Wildfire projections show a structural change in pattern, with emergent growth in wildfire extent in the southeastern United States coincident with higher population densities and social vulnerability. High heat areas expand toward the North and East from the Southwest. Projections also show substantial growth in areas affected by two or more hazards and highlight where hazards correspond with high exposure or high vulnerability. For all hazard categories and scenarios, at least 80 percent of the population exposed to high hazard is in either a high-vulnerability or high-exposure county. Our results highlight how management strategies would differ between those focused on mitigating the biophysical hazard alone and those that focus on mitigating exposure or vulnerability criteria.

Suggested Citation

  • Wear, David N. & Warziniack, Travis & O’Dea, Claire & Coulston, John, 2024. "Changing Hazards, Exposure, and Vulnerability in the Conterminous United States, 2020–2070," RFF Working Paper Series 24-21, Resources for the Future.
  • Handle: RePEc:rff:dpaper:dp-24-21
    as

    Download full text from publisher

    File URL: https://www.rff.org/documents/4703/WP_24-21.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seth E. Spielman & Joseph Tuccillo & David C. Folch & Amy Schweikert & Rebecca Davies & Nathan Wood & Eric Tate, 2020. "Evaluating social vulnerability indicators: criteria and their application to the Social Vulnerability Index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 417-436, January.
    2. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    3. Anthony B. Atkinson & Joseph E. Stiglitz, 2015. "Lectures on Public Economics Updated edition," Economics Books, Princeton University Press, edition 2, number 10493.
    4. David N Wear & Jeffrey P Prestemon, 2019. "Spatiotemporal downscaling of global population and income scenarios for the United States," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-19, July.
    5. Sigridur Bjarnadottir & Yue Li & Mark Stewart, 2011. "Social vulnerability index for coastal communities at risk to hurricane hazard and a changing climate," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 1055-1075, November.
    6. Laurens M. Bouwer, 2013. "Projections of Future Extreme Weather Losses Under Changes in Climate and Exposure," Risk Analysis, John Wiley & Sons, vol. 33(5), pages 915-930, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    2. Mohsen Alizadeh & Esmaeil Alizadeh & Sara Asadollahpour Kotenaee & Himan Shahabi & Amin Beiranvand Pour & Mahdi Panahi & Baharin Bin Ahmad & Lee Saro, 2018. "Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    3. Zachary T. Goodman & Caitlin A. Stamatis & Justin Stoler & Christopher T. Emrich & Maria M. Llabre, 2021. "Methodological challenges to confirmatory latent variable models of social vulnerability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2731-2749, April.
    4. Ibolya Török, 2018. "Qualitative Assessment of Social Vulnerability to Flood Hazards in Romania," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    5. Stephanie Chang & Jackie Yip & Shona Zijll de Jong & Rebecca Chaster & Ashley Lowcock, 2015. "Using vulnerability indicators to develop resilience networks: a similarity approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1827-1841, September.
    6. Eric Tate & Aaron Strong & Travis Kraus & Haoyi Xiong, 2016. "Flood recovery and property acquisition in Cedar Rapids, Iowa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2055-2079, February.
    7. J. Connor Darlington & Niko Yiannakoulias & Amin Elshorbagy, 2022. "Changes in social vulnerability to flooding: a quasi-experimental analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2487-2509, April.
    8. Lynée L Turek-Hankins & Miyuki Hino & Katharine J Mach, 2020. "Risk screening methods for extreme heat: Implications for equity-oriented adaptation," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-20, November.
    9. Eric Tate & Aaron Strong & Travis Kraus & Haoyi Xiong, 2016. "Flood recovery and property acquisition in Cedar Rapids, Iowa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2055-2079, February.
    10. Yi Ge & Wen Dou & Xiaotao Wang & Yi Chen & Ziyuan Zhang, 2021. "Identifying urban–rural differences in social vulnerability to natural hazards: a case study of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2629-2651, September.
    11. Beth Tellman & Cody Schank & Bessie Schwarz & Peter D. Howe & Alex de Sherbinin, 2020. "Using Disaster Outcomes to Validate Components of Social Vulnerability to Floods: Flood Deaths and Property Damage across the USA," Sustainability, MDPI, vol. 12(15), pages 1-28, July.
    12. Pilar Baquedano-Juliá & Tiago Miguel Ferreira & Camilo Arriagada-Luco & Cristián Sandoval & Nuria Chiara Palazzi & Daniel V. Oliveira, 2024. "Multi-vulnerability analysis for seismic risk management in historic city centres: an application to the historic city centre of La Serena, Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(10), pages 9223-9266, August.
    13. Tugkan Tanir & Andre de Souza de Lima & Gustavo A. Coelho & Sukru Uzun & Felicio Cassalho & Celso M. Ferreira, 2021. "Assessing the spatiotemporal socioeconomic flood vulnerability of agricultural communities in the Potomac River Watershed," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 225-251, August.
    14. Sarah Stafford & Jeremy Abramowitz, 2017. "An analysis of methods for identifying social vulnerability to climate change and sea level rise: a case study of Hampton Roads, Virginia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1089-1117, January.
    15. Jidong Wu & Ying Li & Ning Li & Peijun Shi, 2018. "Development of an Asset Value Map for Disaster Risk Assessment in China by Spatial Disaggregation Using Ancillary Remote Sensing Data," Risk Analysis, John Wiley & Sons, vol. 38(1), pages 17-30, January.
    16. Majda Benzidia & Michel Lubrano & Paolo Melindi-Ghidi, 2024. "Education politics, schooling choice and public school quality: the impact of income polarization," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 31(6), pages 1640-1668, December.
    17. Belinda Storey & Sally Owen & Christian Zammit & Ilan Noy, 2024. "Insurance retreat in residential properties from future sea level rise in Aotearoa New Zealand," Climatic Change, Springer, vol. 177(3), pages 1-21, March.
    18. Jonathan W. F. Remo & Nicholas Pinter & Moe Mahgoub, 2016. "Assessing Illinois’s flood vulnerability using Hazus-MH," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 265-287, March.
    19. Jennifer La'O & Alireza Tahbaz‐Salehi, 2022. "Optimal Monetary Policy in Production Networks," Econometrica, Econometric Society, vol. 90(3), pages 1295-1336, May.
    20. Mehmet Baran Ulak & Ayberk Kocatepe & Lalitha Madhavi Konila Sriram & Eren Erman Ozguven & Reza Arghandeh, 2018. "Assessment of the hurricane-induced power outages from a demographic, socioeconomic, and transportation perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1489-1508, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-24-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Resources for the Future (email available below). General contact details of provider: https://edirc.repec.org/data/rffffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.