IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v164y2021i3d10.1007_s10584-021-02968-7.html
   My bibliography  Save this article

Heterogeneous snowpack response and snow drought occurrence across river basins of northwestern North America under 1.0°C to 4.0°C global warming

Author

Listed:
  • Rajesh R. Shrestha

    (University of Victoria)

  • Barrie R. Bonsal

    (Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada)

  • James M. Bonnyman

    (University of Victoria)

  • Alex J. Cannon

    (University of Victoria)

  • Mohammad Reza Najafi

    (Western University)

Abstract

Anthropogenic climate change is affecting the snowpack freshwater storage, with socioeconomic and ecological impacts. We present an assessment of maximum snow water equivalent (SWEmax) change in large river basins of the northwestern North America region using the Canadian Regional Climate Model 50-member ensemble under 1.0 °C to 4.0 °C global warming thresholds above the pre-industrial period. The projections indicate steep SWEmax decline in the warmer coastal/southern basins (i.e., Skeena, Fraser and Columbia), moderate decline in the milder interior basins (i.e., Peace, Athabasca and Saskatchewan), and either a small increase or decrease in the colder northern basins (i.e., Yukon, Peel, and Liard). A key factor for these spatial differences is the proximity of winter mean temperature to the freeze/melt threshold, with larger SWEmax declines for the basins closer to the threshold. Using the random forests machine-learning model, we find that the SWEmax change is primarily temperature controlled, especially for warmer basins. Further, under a categorical framework of below-normal SWEmax defined as snow drought (SD), we find that above-normal temperature and precipitation are the dominant conditions for SD occurrences under higher global warming thresholds. This implies a limited capacity of precipitation increase to compensate the temperature-driven snowpack decline. Additionally, the frequency and severity of SD occurrences are projected to be most extreme in the southern basins where current water demands are highest. Overall, the results of this study, including insights on snowpack changes, their climatic controls, and the framework for SD classification, are applicable for basins spanning a range of hydro-climatological regimes.

Suggested Citation

  • Rajesh R. Shrestha & Barrie R. Bonsal & James M. Bonnyman & Alex J. Cannon & Mohammad Reza Najafi, 2021. "Heterogeneous snowpack response and snow drought occurrence across river basins of northwestern North America under 1.0°C to 4.0°C global warming," Climatic Change, Springer, vol. 164(3), pages 1-21, February.
  • Handle: RePEc:spr:climat:v:164:y:2021:i:3:d:10.1007_s10584-021-02968-7
    DOI: 10.1007/s10584-021-02968-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-02968-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-02968-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diana R. Gergel & Bart Nijssen & John T. Abatzoglou & Dennis P. Lettenmaier & Matt R. Stumbaugh, 2017. "Effects of climate change on snowpack and fire potential in the western USA," Climatic Change, Springer, vol. 141(2), pages 287-299, March.
    2. T. P. Barnett & J. C. Adam & D. P. Lettenmaier, 2005. "Potential impacts of a warming climate on water availability in snow-dominated regions," Nature, Nature, vol. 438(7066), pages 303-309, November.
    3. Xiangdong Zhang & Juanxiong He & Jing Zhang & Igor Polyakov & Rüdiger Gerdes & Jun Inoue & Peili Wu, 2013. "Enhanced poleward moisture transport and amplified northern high-latitude wetting trend," Nature Climate Change, Nature, vol. 3(1), pages 47-51, January.
    4. John C. Fyfe & Chris Derksen & Lawrence Mudryk & Gregory M. Flato & Benjamin D. Santer & Neil C. Swart & Noah P. Molotch & Xuebin Zhang & Hui Wan & Vivek K. Arora & John Scinocca & Yanjun Jiao, 2017. "Large near-term projected snowpack loss over the western United States," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    5. Noah S. Diffenbaugh & Martin Scherer & Moetasim Ashfaq, 2013. "Response of snow-dependent hydrologic extremes to continued global warming," Nature Climate Change, Nature, vol. 3(4), pages 379-384, April.
    6. Rajesh R. Shrestha & Alex J. Cannon & Markus A. Schnorbus & Francis W. Zwiers, 2017. "Projecting future nonstationary extreme streamflow for the Fraser River, Canada," Climatic Change, Springer, vol. 145(3), pages 289-303, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dalei Hao & Gautam Bisht & Hailong Wang & Donghui Xu & Huilin Huang & Yun Qian & L. Ruby Leung, 2023. "A cleaner snow future mitigates Northern Hemisphere snowpack loss from warming," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Michelle R. McCrystall & Julienne Stroeve & Mark Serreze & Bruce C. Forbes & James A. Screen, 2021. "New climate models reveal faster and larger increases in Arctic precipitation than previously projected," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Aynur Şensoy & Gökçen Uysal & Y. Oğulcan Doğan & H. Soykan Civelek, 2023. "The Future Snow Potential and Snowmelt Runoff of Mesopotamian Water Tower," Sustainability, MDPI, vol. 15(8), pages 1-22, April.
    4. Diana R. Gergel & Bart Nijssen & John T. Abatzoglou & Dennis P. Lettenmaier & Matt R. Stumbaugh, 2017. "Effects of climate change on snowpack and fire potential in the western USA," Climatic Change, Springer, vol. 141(2), pages 287-299, March.
    5. Schaefli, Bettina & Manso, Pedro & Fischer, Mauro & Huss, Matthias & Farinotti, Daniel, 2017. "The role of glacier retreat for Swiss hydropower production," Earth Arxiv 7z96d, Center for Open Science.
    6. Haiyan Fang & Zemeng Fan, 2021. "Impacts of climate and land use changes on water and sediment yields for the black soil region, northeastern China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6259-6278, April.
    7. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    8. Donna, Javier & Espin-Sanchez, Jose, 2014. "The Illiquidity of Water Markets," MPRA Paper 55078, University Library of Munich, Germany.
    9. Hongmin An & Cunde Xiao & Minghu Ding, 2019. "The Spatial Pattern of Ski Areas and Its Driving Factors in China: A Strategy for Healthy Development of the Ski Industry," Sustainability, MDPI, vol. 11(11), pages 1-22, June.
    10. Donna, Javier D. & Espin-Sanchez, Jose, 2018. "Are Water Markets Liquid? Evidence from Southeastern Spain," MPRA Paper 117032, University Library of Munich, Germany.
    11. Shakil Ahmad Romshoo & Jasia Bashir & Irfan Rashid, 2020. "Twenty-first century-end climate scenario of Jammu and Kashmir Himalaya, India, using ensemble climate models," Climatic Change, Springer, vol. 162(3), pages 1473-1491, October.
    12. Muhammad Arfan & Jewell Lund & Daniyal Hassan & Maaz Saleem & Aftab Ahmad, 2019. "Assessment of Spatial and Temporal Flow Variability of the Indus River," Resources, MDPI, vol. 8(2), pages 1-17, May.
    13. Marion Réveillet & Marie Dumont & Simon Gascoin & Matthieu Lafaysse & Pierre Nabat & Aurélien Ribes & Rafife Nheili & Francois Tuzet & Martin Ménégoz & Samuel Morin & Ghislain Picard & Paul Ginoux, 2022. "Black carbon and dust alter the response of mountain snow cover under climate change," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Dae II Jeong & Alex J. Cannon & Bin Yu, 2022. "Influences of atmospheric blocking on North American summer heatwaves in a changing climate: a comparison of two Canadian Earth system model large ensembles," Climatic Change, Springer, vol. 172(1), pages 1-21, May.
    15. Wei Shi & Fuwei Qiao & Liang Zhou, 2021. "Identification of Ecological Risk Zoning on Qinghai-Tibet Plateau from the Perspective of Ecosystem Service Supply and Demand," Sustainability, MDPI, vol. 13(10), pages 1-17, May.
    16. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    17. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. M. Mortezapour & B. Menounos & P. L. Jackson & A. R. Erler, 2022. "Future Snow Changes over the Columbia Mountains, Canada, using a Distributed Snow Model," Climatic Change, Springer, vol. 172(1), pages 1-24, May.
    19. Vimal Mishra & Reepal Shah & Amit Garg, 2016. "Climate Change in Madhya Pradesh: Indicators, Impacts and Adaptation," Working Papers id:10844, eSocialSciences.
    20. Xiuxue Chen & Xiaofeng Li & Lingjia Gu & Xingming Zheng & Guangrui Wang & Lei Li, 2021. "Increasing Snow–Soil Interface Temperature in Farmland of Northeast China from 1979 to 2018," Agriculture, MDPI, vol. 11(9), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:164:y:2021:i:3:d:10.1007_s10584-021-02968-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.