IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v3y2013i4d10.1038_nclimate1732.html
   My bibliography  Save this article

Response of snow-dependent hydrologic extremes to continued global warming

Author

Listed:
  • Noah S. Diffenbaugh

    (Stanford University)

  • Martin Scherer

    (Stanford University)

  • Moetasim Ashfaq

    (Climate Change Science Institute, Oak Ridge National Laboratory)

Abstract

Snow accumulation is critical for water availability in the Northern Hemisphere. Model projections show a shift towards low snow years, with areas of western North America, northeastern Europe and the Greater Himalayas showing the strongest decline. Many snow-dependent regions are likely to experience increasing stress from low snow years if global warming exceeds 2° above the pre-industrial baseline.

Suggested Citation

  • Noah S. Diffenbaugh & Martin Scherer & Moetasim Ashfaq, 2013. "Response of snow-dependent hydrologic extremes to continued global warming," Nature Climate Change, Nature, vol. 3(4), pages 379-384, April.
  • Handle: RePEc:nat:natcli:v:3:y:2013:i:4:d:10.1038_nclimate1732
    DOI: 10.1038/nclimate1732
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate1732
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate1732?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajesh R. Shrestha & Barrie R. Bonsal & James M. Bonnyman & Alex J. Cannon & Mohammad Reza Najafi, 2021. "Heterogeneous snowpack response and snow drought occurrence across river basins of northwestern North America under 1.0°C to 4.0°C global warming," Climatic Change, Springer, vol. 164(3), pages 1-21, February.
    2. Lisa Holsinger & Robert Keane & Daniel Isaak & Lisa Eby & Michael Young, 2014. "Relative effects of climate change and wildfires on stream temperatures: a simulation modeling approach in a Rocky Mountain watershed," Climatic Change, Springer, vol. 124(1), pages 191-206, May.
    3. Ruiwen Zhang & Chengyi Zhao & Xiaofei Ma & Karthikeyan Brindha & Qifei Han & Chaofan Li & Xiaoning Zhao, 2019. "Projected Spatiotemporal Dynamics of Drought under Global Warming in Central Asia," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    4. Hongmin An & Cunde Xiao & Minghu Ding, 2019. "The Spatial Pattern of Ski Areas and Its Driving Factors in China: A Strategy for Healthy Development of the Ski Industry," Sustainability, MDPI, vol. 11(11), pages 1-22, June.
    5. Aynur Şensoy & Gökçen Uysal & Y. Oğulcan Doğan & H. Soykan Civelek, 2023. "The Future Snow Potential and Snowmelt Runoff of Mesopotamian Water Tower," Sustainability, MDPI, vol. 15(8), pages 1-22, April.
    6. Jinxin Zhu & Xuerou Weng & Bing Guo & Xueting Zeng & Cong Dong, 2023. "Investigating Extreme Snowfall Changes in China Based on an Ensemble of High-Resolution Regional Climate Models," Sustainability, MDPI, vol. 15(5), pages 1-17, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:3:y:2013:i:4:d:10.1038_nclimate1732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.