IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v156y2019i4d10.1007_s10584-019-02525-3.html
   My bibliography  Save this article

Global warming impact on confined livestock in buildings: efficacy of adaptation measures to reduce heat stress for growing-fattening pigs

Author

Listed:
  • Günther Schauberger

    (University of Veterinary Medicine)

  • Christian Mikovits

    (University of Veterinary Medicine)

  • Werner Zollitsch

    (University of Natural Resources and Life Sciences)

  • Stefan J. Hörtenhuber

    (University of Natural Resources and Life Sciences)

  • Johannes Baumgartner

    (University of Veterinary Medicine)

  • Knut Niebuhr

    (University of Veterinary Medicine)

  • Martin Piringer

    (Central Institute of Meteorology and Geodynamics)

  • Werner Knauder

    (Central Institute of Meteorology and Geodynamics)

  • Ivonne Anders

    (Central Institute of Meteorology and Geodynamics)

  • Konrad Andre

    (Central Institute of Meteorology and Geodynamics)

  • Isabel Hennig-Pauka

    (University of Veterinary Medicine)

  • Martin Schönhart

    (University of Natural Resources and Life Sciences)

Abstract

Pigs and poultry are raised predominantly at high stocking densities in confined, insulated livestock buildings with mechanical ventilation systems. These systems are quite sensitive to heat stress, which has increased in recent decades from anthropogenic warming. A dataset of hourly meteorological data from 1981 to 2017 was used to drive a steady-state balance model for sensible and latent heat that simulates the indoor climate of a conventional reference system, and this model was used to predict the effect of global warming on growing-fattening pigs housed in such livestock confinement buildings. Seven adaptation measures were selected to investigate the effect on the indoor climate; these measures included three energy-saving air preparation systems, a doubling of the maximum ventilation rate, a reduction in the stocking density, and a shift in the feeding and resting time patterns. The impact of heat stress on animals was calculated with the following three heat stress metrics: a threshold of the indoor temperature, the temperature-humidity index, and a body mass–adapted temperature. The seven adaptation measures were quantified by a reduction in factors of the heat stress parameters. The highest reduction of heat stress in comparison with the conventional reference system was achieved by the three air preparation systems in the range of 54 to 92% for adiabatic systems and 65 to 100% for an earth-air heat exchanger, followed by an increase in the ventilation rate and the time shift. The reduction in the stocking density showed the lowest improvement. In addition to the reduction in the heat stress, a temporal trend over three decades was also used to quantify the resilience of pig confinement systems. The efficacy of some of the adaptation measures is great enough to mitigate the increase of heat stress that occurs due to global warming.

Suggested Citation

  • Günther Schauberger & Christian Mikovits & Werner Zollitsch & Stefan J. Hörtenhuber & Johannes Baumgartner & Knut Niebuhr & Martin Piringer & Werner Knauder & Ivonne Anders & Konrad Andre & Isabel Hen, 2019. "Global warming impact on confined livestock in buildings: efficacy of adaptation measures to reduce heat stress for growing-fattening pigs," Climatic Change, Springer, vol. 156(4), pages 567-587, October.
  • Handle: RePEc:spr:climat:v:156:y:2019:i:4:d:10.1007_s10584-019-02525-3
    DOI: 10.1007/s10584-019-02525-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-019-02525-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-019-02525-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Warren E. Walker & Marjolijn Haasnoot & Jan H. Kwakkel, 2013. "Adapt or Perish: A Review of Planning Approaches for Adaptation under Deep Uncertainty," Sustainability, MDPI, vol. 5(3), pages 1-25, March.
    2. Ozgener, Leyla, 2011. "A review on the experimental and analytical analysis of earth to air heat exchanger (EAHE) systems in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4483-4490.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isabel Blanco-Penedo & Antonio Velarde & Richard P. Kipling & Alejandro Ruete, 2020. "Modeling heat stress under organic dairy farming conditions in warm temperate climates within the Mediterranean basin," Climatic Change, Springer, vol. 162(3), pages 1269-1285, October.
    2. Costantino, Andrea & Comba, Lorenzo & Cornale, Paolo & Fabrizio, Enrico, 2022. "Energy impact of climate control in pig farming: Dynamic simulation and experimental validation," Applied Energy, Elsevier, vol. 309(C).
    3. Günther Schauberger & Martin Schönhart & Werner Zollitsch & Stefan J. Hörtenhuber & Leopold Kirner & Christian Mikovits & Johannes Baumgartner & Martin Piringer & Werner Knauder & Ivonne Anders & Konr, 2021. "Economic Risk Assessment by Weather-Related Heat Stress Indices for Confined Livestock Buildings: A Case Study for Fattening Pigs in Central Europe," Agriculture, MDPI, vol. 11(2), pages 1-22, February.
    4. Stefan J. Hörtenhuber & Günther Schauberger & Christian Mikovits & Martin Schönhart & Johannes Baumgartner & Knut Niebuhr & Martin Piringer & Ivonne Anders & Konrad Andre & Isabel Hennig-Pauka & Werne, 2020. "The Effect of Climate Change-Induced Temperature Increase on Performance and Environmental Impact of Intensive Pig Production Systems," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    5. Etwire, Prince Maxwell, 2020. "The impact of climate change on farming system selection in Ghana," Agricultural Systems, Elsevier, vol. 179(C).
    6. Cheng, Muxi & McCarl, Bruce A. & Fei, Chengcheng, 2021. "Climate Change Effects on the U.S. Hog production," 2021 Annual Meeting, August 1-3, Austin, Texas 313966, Agricultural and Applied Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. J. Warmink & M. Brugnach & J. Vinke-de Kruijf & R. M. J. Schielen & D. C. M. Augustijn, 2017. "Coping with Uncertainty in River Management: Challenges and Ways Forward," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4587-4600, November.
    2. Ahmed, Farhana & Moors, Eddy & Khan, M. Shah Alam & Warner, Jeroen & Terwisscha van Scheltinga, Catharien, 2018. "Tipping points in adaptation to urban flooding under climate change and urban growth: The case of the Dhaka megacity," Land Use Policy, Elsevier, vol. 79(C), pages 496-506.
    3. Broitman, Dani & Ben-Haim, Yakov, 2022. "Forecasting residential sprawl under uncertainty: An info-gap analysis," Land Use Policy, Elsevier, vol. 120(C).
    4. Andri Ottesen & Dieter Thom & Rupali Bhagat & Rola Mourdaa, 2023. "Learning from the Future of Kuwait: Scenarios as a Learning Tool to Build Consensus for Actions Needed to Realize Vision 2035," Sustainability, MDPI, vol. 15(9), pages 1-25, April.
    5. Bethany Robinson & Jonathan D. Herman, 2019. "A framework for testing dynamic classification of vulnerable scenarios in ensemble water supply projections," Climatic Change, Springer, vol. 152(3), pages 431-448, March.
    6. Annelie Holzkämper, 2017. "Adapting Agricultural Production Systems to Climate Change—What’s the Use of Models?," Agriculture, MDPI, vol. 7(10), pages 1-15, October.
    7. William Mobley & Kayode O. Atoba & Wesley E. Highfield, 2020. "Uncertainty in Flood Mitigation Practices: Assessing the Economic Benefits of Property Acquisition and Elevation in Flood-Prone Communities," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
    8. Seyed Ahmad Reza Mir Mohammadi Kooshknow & Rob den Exter & Franco Ruzzenenti, 2020. "An Exploratory Agent-Based Modeling Analysis Approach to Test Business Models for Electricity Storage," Energies, MDPI, vol. 13(7), pages 1-14, April.
    9. Aldona Skotnicka-Siepsiak, 2020. "Operation of a Tube GAHE in Northeastern Poland in Spring and Summer—A Comparison of Real-World Data with Mathematically Modeled Data," Energies, MDPI, vol. 13(7), pages 1-15, April.
    10. Anna Porębska & Paola Rizzi & Satoshi Otsuki & Masahiro Shirotsuki, 2019. "Walkability and Resilience: A Qualitative Approach to Design for Risk Reduction," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    11. Jannie Coenen & Rob van der Heijden & Allard C. R. van Riel, 2019. "Making a Transition toward more Mature Closed-Loop Supply Chain Management under Deep Uncertainty and Dynamic Complexity: A Methodology," Sustainability, MDPI, vol. 11(8), pages 1-27, April.
    12. P. Velarde & X. Tian & A. D. Sadowska & J. M. Maestre, 2019. "Scenario-Based Hierarchical and Distributed MPC for Water Resources Management with Dynamical Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 677-696, January.
    13. Ghouchani, Mahya & Taji, Mohammad & Cheheltani, Atefeh Sadat & Chehr, Mohammad Seifi, 2021. "Developing a perspective on the use of renewable energy in Iran," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    14. Elombo Motoula, Smaël Magloire & Gomat, Landry Jean Pierre & Lin, Jian & M’passi Mabiala, Bernard, 2022. "Continuum approach to evaluate humidity transportation by an Earth to Air Energy Exchanger," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    15. Yıldız, Ahmet & Ozgener, Onder & Ozgener, Leyla, 2012. "Energetic performance analysis of a solar photovoltaic cell (PV) assisted closed loop earth-to-air heat exchanger for solar greenhouse cooling: An experimental study for low energy architecture in Aeg," Renewable Energy, Elsevier, vol. 44(C), pages 281-287.
    16. Matteo Giuliani & Andrea Castelletti, 2016. "Is robustness really robust? How different definitions of robustness impact decision-making under climate change," Climatic Change, Springer, vol. 135(3), pages 409-424, April.
    17. Hsu, Chien-Yeh & Huang, Po-Chun & Liang, Jyun-De & Chiang, Yuan-Ching & Chen, Sih-Li, 2020. "The in-situ experiment of earth-air heat exchanger for a cafeteria building in subtropical monsoon climate," Renewable Energy, Elsevier, vol. 157(C), pages 741-753.
    18. B. Gersonius & J. Rijke & R. Ashley & P. Bloemen & E. Kelder & C. Zevenbergen, 2016. "Adaptive Delta Management for flood risk and resilience in Dordrecht, The Netherlands," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 201-216, June.
    19. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    20. Judy Lawrence & Robert Bell & Adolf Stroombergen, 2019. "A Hybrid Process to Address Uncertainty and Changing Climate Risk in Coastal Areas Using Dynamic Adaptive Pathways Planning, Multi-Criteria Decision Analysis & Real Options Analysis: A New Zealand App," Sustainability, MDPI, vol. 11(2), pages 1-18, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:156:y:2019:i:4:d:10.1007_s10584-019-02525-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.