IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v137y2016i3d10.1007_s10584-016-1691-4.html
   My bibliography  Save this article

Voltinism and resilience to climate-induced phenological mismatch

Author

Listed:
  • Robert J. Knell

    (Queen Mary University of London)

  • Stephen J. Thackeray

    (Lake Ecosystems Group, Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg)

Abstract

Changes in the seasonal timing of recurring biological events are considered to be a major component of the global “fingerprint” of climate change. One effect of these changes is that ecologically important seasonal species interactions could become desynchronised as a result of these shifts (i.e. phenological mismatching), leading to reductions in fitness for some or all of the organisms concerned. One important, but unresolved, issue is the extent to which variations in voltinism (the number of generations a population of a species produces per year) may serve to exacerbate, or confer resilience to, the effects of seasonal shifts. Univoltine organisms (those with one generation per year) will always suffer the deleterious consequences of phenological mismatch, whereas multivoltine species are likely to experience at least some relief from these negative effects in generations that occur later in the season. Conversely, univoltine species will experience continual selection to adapt to changing seasonality, whereas multivoltine species will experience reduced or no selection during those generations that occur later in the season. Here, we present a new theoretical model to explore the population consequences of scenarios of changing seasonality and varying voltinism in clonal species. We find that organisms that undergo multiple generations per year show greater resilience to phenological mismatching in the spring and adapt better to changing seasonality, because of the recovery of population size and genetic diversity after each spring mismatching event. These results have clear implications for management and conservation of populations that are threatened by the effects of mismatch.

Suggested Citation

  • Robert J. Knell & Stephen J. Thackeray, 2016. "Voltinism and resilience to climate-induced phenological mismatch," Climatic Change, Springer, vol. 137(3), pages 525-539, August.
  • Handle: RePEc:spr:climat:v:137:y:2016:i:3:d:10.1007_s10584-016-1691-4
    DOI: 10.1007/s10584-016-1691-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1691-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1691-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    2. Luis-Miguel Chevin & Russell Lande & Georgina M Mace, 2010. "Adaptation, Plasticity, and Extinction in a Changing Environment: Towards a Predictive Theory," PLOS Biology, Public Library of Science, vol. 8(4), pages 1-8, April.
    3. Terry L. Root & Jeff T. Price & Kimberly R. Hall & Stephen H. Schneider & Cynthia Rosenzweig & J. Alan Pounds, 2003. "Fingerprints of global warming on wild animals and plants," Nature, Nature, vol. 421(6918), pages 57-60, January.
    4. Luis-Miguel Chevin & Russell Lande & Georgina M Mace, 2010. "Adaptation, Plasticity, and Extinction in a Changing Environment: Towards a Predictive Theory," Working Papers id:2494, eSocialSciences.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    2. Brooks, Wesley R. & Newbold, Stephen C., 2014. "An updated biodiversity nonuse value function for use in climate change integrated assessment models," Ecological Economics, Elsevier, vol. 105(C), pages 342-349.
    3. Fatih Fazlioglu & Justin S. H. Wan, 2021. "Warming matters: alpine plant responses to experimental warming," Climatic Change, Springer, vol. 164(3), pages 1-17, February.
    4. Richard Tol, 2011. "Regulating knowledge monopolies: the case of the IPCC," Climatic Change, Springer, vol. 108(4), pages 827-839, October.
    5. Fabina, Nicholas S. & Abbott, Karen C. & Gilman, R.Tucker, 2010. "Sensitivity of plant–pollinator–herbivore communities to changes in phenology," Ecological Modelling, Elsevier, vol. 221(3), pages 453-458.
    6. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    7. Annie Paradis & Joe Elkinton & Katharine Hayhoe & John Buonaccorsi, 2008. "Role of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North America," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(5), pages 541-554, June.
    8. Bruno R Ribeiro & Lilian P Sales & Paulo De Marco Jr. & Rafael Loyola, 2016. "Assessing Mammal Exposure to Climate Change in the Brazilian Amazon," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-13, November.
    9. Yingjie Niu & Zhentao Zou, 2024. "Robust Abatement Policy with Uncertainty About Environmental Disasters," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(4), pages 933-965, April.
    10. Singer, Alexander & Johst, Karin & Banitz, Thomas & Fowler, Mike S. & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Hartig, Florian & Krug, Rainer M. & Liess, Matthias & Matlack, Glenn & Meyer, Katrin M, 2016. "Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?," Ecological Modelling, Elsevier, vol. 326(C), pages 63-74.
    11. Disha Sachan & Pankaj Kumar & Md. Saquib Saharwardi, 2022. "Contemporary climate change velocity for near-surface temperatures over India," Climatic Change, Springer, vol. 173(3), pages 1-19, August.
    12. Ferenc L. Toth & Eva Hizsnyik, 2005. "Managing The Inconceivable: Participatory Assessments Of Impacts And Responses To Extreme Climate Change," Working Papers FNU-74, Research unit Sustainability and Global Change, Hamburg University, revised May 2005.
    13. Víctor Rincón & Javier Velázquez & Derya Gülçin & Aida López-Sánchez & Carlos Jiménez & Ali Uğur Özcan & Juan Carlos López-Almansa & Tomás Santamaría & Daniel Sánchez-Mata & Kerim Çiçek, 2023. "Mapping Priority Areas for Connectivity of Yellow-Winged Darter ( Sympetrum flaveolum , Linnaeus 1758) under Climate Change," Land, MDPI, vol. 12(2), pages 1-39, January.
    14. Lucie Kuczynski & Mathieu Chevalier & Pascal Laffaille & Marion Legrand & Gaël Grenouillet, 2017. "Indirect effect of temperature on fish population abundances through phenological changes," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-13, April.
    15. Greenspoon, Philip B. & Mideo, Nicole, 2017. "Evolutionary rescue of a parasite population by mutation rate evolution," Theoretical Population Biology, Elsevier, vol. 117(C), pages 64-75.
    16. Marco Archetti & Andrew D Richardson & John O'Keefe & Nicolas Delpierre, 2013. "Predicting Climate Change Impacts on the Amount and Duration of Autumn Colors in a New England Forest," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    17. Maldonado-Chaparro, Adriana A. & Read, Dwight W. & Blumstein, Daniel T., 2017. "Can individual variation in phenotypic plasticity enhance population viability?," Ecological Modelling, Elsevier, vol. 352(C), pages 19-30.
    18. Miaogen Shen & Yanhong Tang & Jin Chen & Wei Yang, 2012. "Specification of thermal growing season in temperate China from 1960 to 2009," Climatic Change, Springer, vol. 114(3), pages 783-798, October.
    19. Dissanayake, Sahan T.M. & Önal, Hayri & Westervelt, James D. & Balbach, Harold E., 2012. "Incorporating species relocation in reserve design models: An example from Ft. Benning GA," Ecological Modelling, Elsevier, vol. 224(1), pages 65-75.
    20. Anderson, James J. & Gurarie, Eliezer & Bracis, Chloe & Burke, Brian J. & Laidre, Kristin L., 2013. "Modeling climate change impacts on phenology and population dynamics of migratory marine species," Ecological Modelling, Elsevier, vol. 264(C), pages 83-97.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:137:y:2016:i:3:d:10.1007_s10584-016-1691-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.