IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v144y2017i4d10.1007_s10584-017-2069-y.html
   My bibliography  Save this article

Recent climatic changes and wetland expansion turned Tibet into a net CH4 source

Author

Listed:
  • Da Wei

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Xiaodan Wang

    (Chinese Academy of Sciences)

Abstract

Methane (CH4) is the second largest contributor to the greenhouse effect. However, it remains unclear to what extent the CH4 cycle acts as a feedback to climate changes, due to insufficient observational constraints and poor knowledge of wetland extent dynamics. The Tibetan Plateau (TP), which has an average elevation of 4000+ m above sea level, contains one-third of China’s natural wetlands. Rapid climate warming (i.e., ~ 0.5 °C per decade since the 1960s) and increasing precipitation in the region have caused wetlands to dry up and then expand, especially since the 2000s. In this study, we assessed the uncertainty and temporal variation of the CH4 budget during 1979–2012 using a biogeochemical model, in situ measurements and dynamic wetland maps. The results showed that the drying up of wetlands from the 1980s to 1990s completely counteracted the rising CH4 emission rates (0.75 ± 0.18 and 0.77 ± 0.19 Tg CH4 year−1 in the 1980s and 1990s, respectively). However, recent precipitation-induced wetland expansion enhanced emissions to 0.96 ± 0.21 Tg CH4 year−1 in the 2000s, which exceeded the rate of CH4 uptake (0.74 ± 0.06 Tg CH4 year−1 in the 2000s). A nonlinear role played by wetland extent in the CH4 budget was revealed, suggesting that there is a need to incorporate wetland extent dynamics over a longer period into model simulations to understand the variation in wetland CH4 release during past decades. Furthermore, the results also indicate that more hydrological components, e.g., wetland shrinkage and expansion under increasing precipitation and glacial melt, should be taken into consideration when projecting wetland CH4 release on the TP.

Suggested Citation

  • Da Wei & Xiaodan Wang, 2017. "Recent climatic changes and wetland expansion turned Tibet into a net CH4 source," Climatic Change, Springer, vol. 144(4), pages 657-670, October.
  • Handle: RePEc:spr:climat:v:144:y:2017:i:4:d:10.1007_s10584-017-2069-y
    DOI: 10.1007/s10584-017-2069-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-017-2069-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-017-2069-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tandong Yao & Lonnie Thompson & Wei Yang & Wusheng Yu & Yang Gao & Xuejun Guo & Xiaoxin Yang & Keqin Duan & Huabiao Zhao & Baiqing Xu & Jiancheng Pu & Anxin Lu & Yang Xiang & Dambaru B. Kattel & Danie, 2012. "Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings," Nature Climate Change, Nature, vol. 2(9), pages 663-667, September.
    2. Ruimin Yang & Liping Zhu & Junbo Wang & Jianting Ju & Qingfeng Ma & Falko Turner & Yun Guo, 2017. "Spatiotemporal variations in volume of closed lakes on the Tibetan Plateau and their climatic responses from 1976 to 2013," Climatic Change, Springer, vol. 140(3), pages 621-633, February.
    3. Gabriel Yvon-Durocher & Andrew P. Allen & David Bastviken & Ralf Conrad & Cristian Gudasz & Annick St-Pierre & Nguyen Thanh-Duc & Paul A. del Giorgio, 2014. "Methane fluxes show consistent temperature dependence across microbial to ecosystem scales," Nature, Nature, vol. 507(7493), pages 488-491, March.
    4. A. F. Lutz & W. W. Immerzeel & A. B. Shrestha & M. F. P. Bierkens, 2014. "Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation," Nature Climate Change, Nature, vol. 4(7), pages 587-592, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong Cui & Yukun Li & Long Yang & Yi Nan & Kunbiao Li & Mahmut Tudaji & Hongchang Hu & Di Long & Muhammad Shahid & Ammara Mubeen & Zhihua He & Bin Yong & Hui Lu & Chao Li & Guangheng Ni & Chunhong Hu , 2023. "Non-monotonic changes in Asian Water Towers’ streamflow at increasing warming levels," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Xiaoyu Guo & Lei Wang & Lide Tian, 2023. "Spatial distributions and temporal variabilities of the recent Indian Summer Monsoon Northern Boundaries in Tibetan Plateau: analysis of outgoing longwave radiation dataset and precipitation isotopes," Climatic Change, Springer, vol. 176(4), pages 1-20, April.
    3. Haijun Deng & N. C. Pepin & Qun Liu & Yaning Chen, 2018. "Understanding the spatial differences in terrestrial water storage variations in the Tibetan Plateau from 2002 to 2016," Climatic Change, Springer, vol. 151(3), pages 379-393, December.
    4. Junhua Yang & Shichang Kang & Deliang Chen & Lin Zhao & Zhenming Ji & Keqin Duan & Haijun Deng & Lekhendra Tripathee & Wentao Du & Mukesh Rai & Fangping Yan & Yuan Li & Robert R. Gillies, 2022. "South Asian black carbon is threatening the water sustainability of the Asian Water Tower," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Jinlong Li & Genxu Wang & Chunlin Song & Shouqin Sun & Jiapei Ma & Ying Wang & Linmao Guo & Dongfeng Li, 2024. "Recent intensified erosion and massive sediment deposition in Tibetan Plateau rivers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Manish Mehta & Vinit Kumar & Pankaj Kunmar & Kalachand Sain, 2023. "Response of the Thick and Thin Debris-Covered Glaciers between 1971 and 2019 in Ladakh Himalaya, India—A Case Study from Pensilungpa and Durung-Drung Glaciers," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    7. Rungruang Janta & Laksanara Khwanchum & Pakorn Ditthakit & Nadhir Al-Ansari & Nguyen Thi Thuy Linh, 2022. "Water Yield Alteration in Thailand’s Pak Phanang Basin Due to Impacts of Climate and Land-Use Changes," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    8. Kimberley R. Miner & Paul Andrew Mayewski & Mary Hubbard & Kenny Broad & Heather Clifford & Imogen Napper & Ananta Gajurel & Corey Jaskolski & Wei Li & Mariusz Potocki & John Priscu, 2021. "A Perspective of the Cumulative Risks from Climate Change on Mt. Everest: Findings from the 2019 Expedition," IJERPH, MDPI, vol. 18(4), pages 1-13, February.
    9. Hongbao Wu & Xuexia Wang & Hongwei Shui & Hasbagan Ganjurjav & Guozheng Hu & Quanhong Lin & Xiaobo Qin & Qingzhu Gao, 2020. "Spatiotemporal Variations of Water Stable Isotope Compositions in Nujiang Headwaters, Qinghai-Tibetan Plateau," Sustainability, MDPI, vol. 12(16), pages 1-15, August.
    10. Qianhan Wu & Linghong Ke & Jida Wang & Tamlin M. Pavelsky & George H. Allen & Yongwei Sheng & Xuejun Duan & Yunqiang Zhu & Jin Wu & Lei Wang & Kai Liu & Tan Chen & Wensong Zhang & Chenyu Fan & Bin Yon, 2023. "Satellites reveal hotspots of global river extent change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Ling-en Wang & Yuxi Zeng & Linsheng Zhong, 2017. "Impact of Climate Change on Tourism on the Qinghai-Tibetan Plateau: Research Based on a Literature Review," Sustainability, MDPI, vol. 9(9), pages 1-14, August.
    12. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    13. Yaqun Liu & Changhe Lu, 2021. "Quantifying Grass Coverage Trends to Identify the Hot Plots of Grassland Degradation in the Tibetan Plateau during 2000–2019," IJERPH, MDPI, vol. 18(2), pages 1-18, January.
    14. Yu Wang & Xiaojun Yao & Na Hu & Te Sha & Xinde Chu, 2022. "The Spatiotemporal Change of Xiao Qaidam Lake from 1990 to 2020 and Its Potential Hazards," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    15. Bhaskar Shrestha & Qinghua Ye & Nitesh Khadka, 2019. "Assessment of Ecosystem Services Value Based on Land Use and Land Cover Changes in the Transboundary Karnali River Basin, Central Himalayas," Sustainability, MDPI, vol. 11(11), pages 1-19, June.
    16. Shijin Wang, 2024. "Opportunities and threats of cryosphere change to the achievement of UN 2030 SDGs," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    17. Jiahui Li & Xinliang Xu, 2023. "Glacier Change and Its Response to Climate Change in Western China," Land, MDPI, vol. 12(3), pages 1-13, March.
    18. Haiting Gu & Yue-Ping Xu & Li Liu & Jingkai Xie & Lu Wang & Suli Pan & Yuxue Guo, 2023. "Seasonal catchment memory of high mountain rivers in the Tibetan Plateau," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Chia-Nan Wang & Hoang-Phu Nguyen & Cheng-Wen Chang, 2021. "Environmental Efficiency Evaluation in the Top Asian Economies: An Application of DEA," Mathematics, MDPI, vol. 9(8), pages 1-19, April.
    20. Taigang Zhang & Weicai Wang & Baosheng An & Lele Wei, 2023. "Enhanced glacial lake activity threatens numerous communities and infrastructure in the Third Pole," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:144:y:2017:i:4:d:10.1007_s10584-017-2069-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.