IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v285y2023ics0378377423002342.html
   My bibliography  Save this article

Soft computing assessment of current and future groundwater resources under CMIP6 scenarios in northwestern Iran

Author

Listed:
  • Kayhomayoon, Zahra
  • Jamnani, Mostafa Rahimi
  • Rashidi, Sajjad
  • Ghordoyee Milan, Sami
  • Arya Azar, Naser
  • Berndtsson, Ronny

Abstract

Excessive use of water resources in combination with climate change threaten to significantly reduce groundwater in arid and semiarid regions. We studied the effects of climate change on the groundwater level for the important Dehgolan Aquifer in northwestern Iran. The water level in this aquifer has dropped by about 35 m during the last 30 years. Soft computing techniques were used together with climate projections in three methodological steps to estimate the groundwater level drop by 2045. Firstly, MODFLOW was used to simulate groundwater flow and movement. Secondly, simulation results, support vector regression (SVR), and least-squares SVR (LSSVR) machine learning models were used to predict groundwater levels for the future 20-year period (2026–2045). The whale optimization algorithm (WOA) was used to improve the prediction results by optimizing the SVR parameters. Thirdly, three climate models of CMIP6 (ACCESS-CM2, BCC-CSM2-MR, and CMCC-ESM2) were used to predict the changes in precipitation for the future period (2026–2045) using SSP 2.6 and SSP 8.5 scenarios. The results showed that the MODFLOW-LSSVR model predicted the groundwater level more accurately than MODFLOW-SVR and MODFLOW-SVR-WOA. The calculation scenario containing previous month groundwater level, monthly aquifer withdrawal, and monthly precipitation had the highest performance in predicting groundwater level with root mean square error (RMSE), mean absolute percentage error (MAPE), and Nash Sutcliffe efficiency (NSE) equal to 0.305 m, 0.014 m, and 0.998, respectively. The results indicate that precipitation may decrease in the future period for the SSP 8.5 scenario (about 6% compared to the reference period 1987–2005). This decrease, along with the continuation of the current aquifer withdrawal, will cause a drop of about 36 m (during 28 years) of the groundwater level (1.3 m per year). The results reveal that the drop could be reduced to 12 m by adopting a 25% reduction in the current aquifer withdrawal. The findings show the necessity of providing a suitable management approach to prevent future aquifer exhaustion due to the continuation of the current withdrawal situation in the region.

Suggested Citation

  • Kayhomayoon, Zahra & Jamnani, Mostafa Rahimi & Rashidi, Sajjad & Ghordoyee Milan, Sami & Arya Azar, Naser & Berndtsson, Ronny, 2023. "Soft computing assessment of current and future groundwater resources under CMIP6 scenarios in northwestern Iran," Agricultural Water Management, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:agiwat:v:285:y:2023:i:c:s0378377423002342
    DOI: 10.1016/j.agwat.2023.108369
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423002342
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108369?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard G. Taylor & Bridget Scanlon & Petra Döll & Matt Rodell & Rens van Beek & Yoshihide Wada & Laurent Longuevergne & Marc Leblanc & James S. Famiglietti & Mike Edmunds & Leonard Konikow & Timothy , 2013. "Ground water and climate change," Nature Climate Change, Nature, vol. 3(4), pages 322-329, April.
    2. Shamsuddin Shahid & Manzul Hazarika, 2010. "Groundwater Drought in the Northwestern Districts of Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 1989-2006, August.
    3. Mohammadi, Babak & Mehdizadeh, Saeid, 2020. "Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 237(C).
    4. Salem, Golam Saleh Ahmed & Kazama, So & Shahid, Shamsuddin & Dey, Nepal C., 2018. "Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region," Agricultural Water Management, Elsevier, vol. 208(C), pages 33-42.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xueliang & Ding, Beibei & Hou, Yonghao & Feng, Puyu & Liu, De Li & Srinivasan, Raghavan & Chen, Yong, 2024. "Assessing the feasibility of sprinkler irrigation schemes and their adaptation to future climate change in groundwater over-exploitation regions," Agricultural Water Management, Elsevier, vol. 292(C).
    2. Xing, Liwen & Cui, Ningbo & Liu, Chunwei & Guo, Li & Zhao, Long & Wu, Zongjun & Jiang, Xuelian & Wen, Shenglin & Zhao, Lu & Gong, Daozhi, 2024. "Estimating daily kiwifruit evapotranspiration under regulated deficit irrigation strategy using optimized surface resistance based model," Agricultural Water Management, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salem, Golam Saleh Ahmed & Kazama, So & Shahid, Shamsuddin & Dey, Nepal C., 2018. "Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region," Agricultural Water Management, Elsevier, vol. 208(C), pages 33-42.
    2. Gianluigi Busico & Maria Margarita Ntona & Sílvia C. P. Carvalho & Olga Patrikaki & Konstantinos Voudouris & Nerantzis Kazakis, 2021. "Simulating Future Groundwater Recharge in Coastal and Inland Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3617-3632, September.
    3. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).
    4. Zhou, Hanmi & Ma, Linshuang & Niu, Xiaoli & Xiang, Youzhen & Chen, Jiageng & Su, Yumin & Li, Jichen & Lu, Sibo & Chen, Cheng & Wu, Qi, 2024. "A novel hybrid model combined with ensemble embedded feature selection method for estimating reference evapotranspiration in the North China Plain," Agricultural Water Management, Elsevier, vol. 296(C).
    5. Manish Kumar & Anuradha Kumari & Daniel Prakash Kushwaha & Pravendra Kumar & Anurag Malik & Rawshan Ali & Alban Kuriqi, 2020. "Estimation of Daily Stage–Discharge Relationship by Using Data-Driven Techniques of a Perennial River, India," Sustainability, MDPI, vol. 12(19), pages 1-21, September.
    6. Babak Mohammadi & Farshad Ahmadi & Saeid Mehdizadeh & Yiqing Guan & Quoc Bao Pham & Nguyen Thi Thuy Linh & Doan Quang Tri, 2020. "Developing Novel Robust Models to Improve the Accuracy of Daily Streamflow Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3387-3409, August.
    7. Mark D. Risser & William D. Collins & Michael F. Wehner & Travis A. O’Brien & Huanping Huang & Paul A. Ullrich, 2024. "Anthropogenic aerosols mask increases in US rainfall by greenhouse gases," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Yan, Zheping & Zhang, Jinzhong & Zeng, Jia & Tang, Jialing, 2021. "Nature-inspired approach: An enhanced whale optimization algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 17-46.
    9. Hadeel E. Khairan & Salah L. Zubaidi & Mustafa Al-Mukhtar & Anmar Dulaimi & Hussein Al-Bugharbee & Furat A. Al-Faraj & Hussein Mohammed Ridha, 2023. "Assessing the Potential of Hybrid-Based Metaheuristic Algorithms Integrated with ANNs for Accurate Reference Evapotranspiration Forecasting," Sustainability, MDPI, vol. 15(19), pages 1-19, September.
    10. Elbeltagi, Ahmed & Deng, Jinsong & Wang, Ke & Malik, Anurag & Maroufpoor, Saman, 2020. "Modeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 241(C).
    11. Acharjee, Tapos Kumar & Halsema, Gerardo van & Ludwig, Fulco & Hellegers, Petra, 2017. "Declining trends of water requirements of dry season Boro rice in the north-west Bangladesh," Agricultural Water Management, Elsevier, vol. 180(PA), pages 148-159.
    12. Xiaowei Guo & Licong Dai & Qian Li & Dawen Qian & Guangmin Cao & Huakun Zhou & Yangong Du, 2020. "Light Grazing Significantly Reduces Soil Water Storage in Alpine Grasslands on the Qinghai-Tibet Plateau," Sustainability, MDPI, vol. 12(6), pages 1-12, March.
    13. Mohamad Reza Soltanian & Farzad Moeini & Zhenxue Dai & Audrey H. Sawyer & Jan H. Fleckenstein & John Doherty & Zachary Curtis & Abhijit Chaudhuri & Gabriele Chiogna & Marwan Fahs & Weon Shik Han & Zai, 2024. "Sustainability Nexus AID: groundwater," Sustainability Nexus Forum, Springer, vol. 32(1), pages 1-12, December.
    14. Farshad Ahmadi & Saeid Mehdizadeh & Babak Mohammadi, 2021. "Development of Bio-Inspired- and Wavelet-Based Hybrid Models for Reconnaissance Drought Index Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4127-4147, September.
    15. Jeetendra P. Aryal & Arun Khatri‐Chhetri & Tek B. Sapkota & Dil B. Rahut & Olaf Erenstein, 2020. "Adoption and economic impacts of laser land leveling in the irrigated rice‐wheat system in Haryana, India using endogenous switching regression," Natural Resources Forum, Blackwell Publishing, vol. 44(3), pages 255-273, August.
    16. Brédy, Jhemson & Gallichand, Jacques & Celicourt, Paul & Gumiere, Silvio José, 2020. "Water table depth forecasting in cranberry fields using two decision-tree-modeling approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    17. Shima Kamali & Keyvan Asghari, 2023. "The Effect of Meteorological and Hydrological Drought on Groundwater Storage Under Climate Change Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 2925-2943, June.
    18. Olaoluwa Oluwaniyi & Yong Zhang & Hossein Gholizadeh & Bailing Li & Xiufen Gu & HongGuang Sun & Chengpeng Lu, 2023. "Correlating Groundwater Storage Change and Precipitation in Alabama, United States from 2000–2021 by Combining the Water Table Fluctuation Method and Statistical Analyses," Sustainability, MDPI, vol. 15(21), pages 1-23, October.
    19. Vanita Jain & Aarushi Dhingra & Eeshita Gupta & Ish Takkar & Rachna Jain & Sardar M. N. Islam, 2023. "Influence of Land Surface Temperature and Rainfall on Surface Water Change: An Innovative Machine Learning Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3013-3035, June.
    20. Kirby, J.M. & Ahmad, M.D. & Mainuddin, M. & Palash, W. & Quadir, M.E. & Shah-Newaz, S.M. & Hossain, M.M., 2015. "The impact of irrigation development on regional groundwater resources in Bangladesh," Agricultural Water Management, Elsevier, vol. 159(C), pages 264-276.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:285:y:2023:i:c:s0378377423002342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.