IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v126y2014i3p399-411.html
   My bibliography  Save this article

Identifying thresholds and barriers to adaptation through measuring climate sensitivity and capacity to change in an Australian primary industry

Author

Listed:
  • Nadine Marshall
  • Chris Stokes

Abstract

Primary producers, including graziers, crop farmers and commercial fishers are especially vulnerable to climate change because they depend on highly climate-sensitive natural resources. Adaptation to climate change will make a major difference to the severity of the impacts experienced. However, individuals (resource users) can erect sometimes seemingly peculiar barriers to potential adaptation options that need to be addressed if adaptation is to be effective. Our aim was to understand the nature of barriers to change for cattle graziers in the northern Australian rangelands. We conceptualised barriers as adverse reactions where resource users are unlikely to contemplate adaptations that threaten core values or perceptions about themselves. We assumed that resource users that were more sensitive to climate change impacts—or more dependent on the resource—were more proximate to thresholds of coping and thus more likely to erect barriers, especially people with little adaptive capacity. Given that climate sensitivity and adaptive capacity are important components of vulnerability, our approach was to conduct a vulnerability assessment to identify potential but important barriers to change. Data from 240 graziers suggest that graziers in northern Australia might be especially vulnerable to climate change because their identity, place attachment, low employability, weak networks and dependents can make them sensitive to change, and their sensitivity can be compounded by a low adaptive capacity. We argue that greater attention needs to be placed on the social context of climate change impacts and on the processes shaping vulnerability and adaptation, especially at the scale of the individual. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Nadine Marshall & Chris Stokes, 2014. "Identifying thresholds and barriers to adaptation through measuring climate sensitivity and capacity to change in an Australian primary industry," Climatic Change, Springer, vol. 126(3), pages 399-411, October.
  • Handle: RePEc:spr:climat:v:126:y:2014:i:3:p:399-411
    DOI: 10.1007/s10584-014-1233-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1233-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1233-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarah Burch, 2011. "Sustainable development paths: investigating the roots of local policy responses to climate change," Sustainable Development, John Wiley & Sons, Ltd., vol. 19(3), pages 176-188, May/June.
    2. David Zilberman & Jinhua Zhao & Amir Heiman, 2012. "Adoption Versus Adaptation, with Emphasis on Climate Change," Annual Review of Resource Economics, Annual Reviews, vol. 4(1), pages 27-53, August.
    3. Österblom, H. & Gårdmark, A. & Bergström, L. & Müller-Karulis, B. & Folke, C. & Lindegren, M. & Casini, M. & Olsson, P. & Diekmann, R. & Blenckner, T. & Humborg, C. & Möllmann, C., 2010. "Making the ecosystem approach operational--Can regime shifts in ecological- and governance systems facilitate the transition?," Marine Policy, Elsevier, vol. 34(6), pages 1290-1299, November.
    4. Walker, William, 2000. "Entrapment in large technology systems: institutional commitment and power relations," Research Policy, Elsevier, vol. 29(7-8), pages 833-846, August.
    5. N. Marshall & I. Gordon & A. Ash, 2011. "The reluctance of resource-users to adopt seasonal climate forecasts to enhance resilience to climate variability on the rangelands," Climatic Change, Springer, vol. 107(3), pages 511-529, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. P. Palutikof & Anne M. Leitch & D. Rissik & S. L. Boulter & M. J. Campbell & A. C. Perez Vidaurre & S. Webb & Fahim N. Tonmoy, 2019. "Overcoming knowledge barriers to adaptation using a decision support framework," Climatic Change, Springer, vol. 153(4), pages 607-624, April.
    2. Rhoda F. Aderinto & J. Alfonso Ortega-S. & Ambrose O. Anoruo & Richard Machen & Benjamin L. Turner, 2020. "Can the Tragedy of the Commons be Avoided in Common-Pool Forage Resource Systems? An Application to Small-Holder Herding in the Semi-Arid Grazing Lands of Nigeria," Sustainability, MDPI, vol. 12(15), pages 1-29, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marletto, Gerardo, 2011. "Structure, agency and change in the car regime. A review of the literature," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 47, pages 71-88.
    2. Geels, Frank W., 2006. "The hygienic transition from cesspools to sewer systems (1840-1930): The dynamics of regime transformation," Research Policy, Elsevier, vol. 35(7), pages 1069-1082, September.
    3. Wallander, Steven & Hrozencik, Aaron & Aillery, Marcel, 2022. "Irrigation Organizations: Drought Planning and Response," Economic Brief 327233, United States Department of Agriculture, Economic Research Service.
    4. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Angela Zinnai & Alberto Pardossi, 2018. "A Reflection of the Use of the Life Cycle Assessment Tool for Agri-Food Sustainability," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    5. Singh, Amarendra Pratap & Narayanan, Krishnan, 2016. "How can weather affect crop area diversity? Panel data evidence from Andhra Pradesh, a rice growing state of India," Studies in Agricultural Economics, Research Institute for Agricultural Economics, vol. 118(2), pages 1-10, August.
    6. Huang, Kaixing & Wang, Jinxia & Huang, Jikun & Findlay, Christopher, 2018. "The potential benefits of agricultural adaptation to warming in China in the long run," Environment and Development Economics, Cambridge University Press, vol. 23(2), pages 139-160, April.
    7. Basharat Ali & Peter Dahlhaus, 2022. "Roles of Selective Agriculture Practices in Sustainable Agricultural Performance: A Systematic Review," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    8. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    9. Geels, Frank W. & Kemp, René, 2007. "Dynamics in socio-technical systems: Typology of change processes and contrasting case studies," Technology in Society, Elsevier, vol. 29(4), pages 441-455.
    10. Tomczak, M.T. & Niiranen, S. & Hjerne, O. & Blenckner, T., 2012. "Ecosystem flow dynamics in the Baltic Proper—Using a multi-trophic dataset as a basis for food–web modelling," Ecological Modelling, Elsevier, vol. 230(C), pages 123-147.
    11. Di Falco, Salvatore & Sharma, Sindra, 2018. "Investing in Climate Change Adaptation: Motivations and Green Incentives in the Fiji Islands," Ecological Economics, Elsevier, vol. 154(C), pages 394-408.
    12. Saint Ville, Arlette S. & Hickey, Gordon M. & Phillip, Leroy E., 2017. "How do stakeholder interactions influence national food security policy in the Caribbean? The case of Saint Lucia," Food Policy, Elsevier, vol. 68(C), pages 53-64.
    13. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics and Public Policy Working Papers 2015-20, University of Adelaide, School of Economics and Public Policy.
    14. Oei, Pao-Yu & Hermann, Hauke & Herpich, Philipp & Holtemöller, Oliver & Lünenbürger, Benjamin & Schult, Christoph, 2020. "Coal phase-out in Germany – Implications and policies for affected regions," Energy, Elsevier, vol. 196(C).
    15. Seungki Lee & Yongjie Ji & GianCarlo Moschini, 2021. "Agricultural Innovation and Adaptation to Climate Change: Insights from Genetically Engineered Maize," Center for Agricultural and Rural Development (CARD) Publications 21-wp616, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    16. Li, Haoyang & Zhao, Jinhua, 2018. "What Drives (No) Adoption of New Irrigation Technologies: A Structural Dynamic Estimation Approach," 2018 Annual Meeting, August 5-7, Washington, D.C. 274474, Agricultural and Applied Economics Association.
    17. Marletto, Gerardo, 2011. "Structure, agency and change in the car regime. A review of the literature," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 47, pages 71-88.
    18. Zilberman, David & Kaplan, Scott, 2014. "What the Adoption Literature can teach us about Social Media and Network Effects on Food Choices," 2014 AAEA/EAAE/CAES Joint Symposium: Social Networks, Social Media and the Economics of Food, May 29-30, 2014, Montreal, Canada 173076, Agricultural and Applied Economics Association.
    19. Robert Huber & Hang Xiong & Kevin Keller & Robert Finger, 2022. "Bridging behavioural factors and standard bio‐economic modelling in an agent‐based modelling framework," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 35-63, February.
    20. Szabo, John & Fabok, Marton, 2020. "Infrastructures and state-building: Comparing the energy politics of the European Commission with the governments of Hungary and Poland," Energy Policy, Elsevier, vol. 138(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:126:y:2014:i:3:p:399-411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.