IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v117y2013i4p843-858.html
   My bibliography  Save this article

Statistical modeling of extreme value behavior in North American tree-ring density series

Author

Listed:
  • Elizabeth Mannshardt
  • Peter Craigmile
  • Martin Tingley

Abstract

Many analyses of the paleoclimate record include conclusions about extremes, with a focus on the unprecedented nature of recent climate events. While the use of extreme value theory is becoming common in the analysis of the instrumental climate record, applications of this framework to the spatio-temporal analysis of paleoclimate records remain limited. This article develops a Bayesian hierarchical model to investigate spatially varying trends and dependencies in the parameters characterizing the distribution of extremes of a proxy data set, and applies it to the site-wise decadal maxima and minima of a gridded network of temperature sensitive tree ring density time series over northern North America. The statistical analysis reveals significant spatial associations in the temporal trends of the location parameters of the generalized extreme value distributions: maxima are increasing as a function of time, with stronger increases in the north and east of North America; minima are significantly increasing in the west, possibly decreasing in the east, and exhibit no changes in the center of the region. Results indicate that the distribution varies as a function of both space and time, with tree ring density maxima becoming more extreme as a function of time and minima having diverging temporal trends, by spatial location. Results of this proxy-only analysis are a first step towards directly reconstructing extremal climate behavior, as opposed to mean climate behavior, by linking extremes in the proxy record to extremes in the instrumental record. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Elizabeth Mannshardt & Peter Craigmile & Martin Tingley, 2013. "Statistical modeling of extreme value behavior in North American tree-ring density series," Climatic Change, Springer, vol. 117(4), pages 843-858, April.
  • Handle: RePEc:spr:climat:v:117:y:2013:i:4:p:843-858
    DOI: 10.1007/s10584-012-0575-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0575-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0575-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Bo & Nychka, Douglas W. & Ammann, Caspar M., 2010. "The Value of Multiproxy Reconstruction of Past Climate," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 883-895.
    2. Sudipto Banerjee, 2005. "On Geodetic Distance Computations in Spatial Modeling," Biometrics, The International Biometric Society, vol. 61(2), pages 617-625, June.
    3. Gelfand A.E. & Kim H-J. & Sirmans C.F. & Banerjee S., 2003. "Spatial Modeling With Spatially Varying Coefficient Processes," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 387-396, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Tingley & Benjamin Shaby, 2015. "Comments on: Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 47-53, March.
    2. Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
    3. David Wheeler & Catherine Calder, 2007. "An assessment of coefficient accuracy in linear regression models with spatially varying coefficients," Journal of Geographical Systems, Springer, vol. 9(2), pages 145-166, June.
    4. Sierra Pugh & Matthew J. Heaton & Jeff Svedin & Neil Hansen, 2019. "Spatiotemporal Lagged Models for Variable Rate Irrigation in Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 634-650, December.
    5. Emilio Porcu & Moreno Bevilacqua & Marc G. Genton, 2016. "Spatio-Temporal Covariance and Cross-Covariance Functions of the Great Circle Distance on a Sphere," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 888-898, April.
    6. Lucia Paci & Alan E. Gelfand & and María Asunción Beamonte & Pilar Gargallo & Manuel Salvador, 2020. "Spatial hedonic modelling adjusted for preferential sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 169-192, January.
    7. Rembrandt D. Scholz & Sebastian Klüsener, 2012. "Regional hot spots of exceptional longevity in Germany," MPIDR Working Papers WP-2012-028, Max Planck Institute for Demographic Research, Rostock, Germany.
    8. Philip A. White & Alan E. Gelfand, 2021. "Multivariate functional data modeling with time-varying clustering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 586-602, September.
    9. Löchl, Michael & Axhausen, Kay W., 2010. "Modelling hedonic residential rents for land use and transport simulation while considering spatial effects," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(2), pages 39-63.
    10. F. Swen Kuh & Grace S. Chiu & Anton H. Westveld, 2019. "Modeling National Latent Socioeconomic Health and Examination of Policy Effects via Causal Inference," Papers 1911.00512, arXiv.org.
    11. Luis A. Barboza & Julien Emile-Geay & Bo Li & Wan He, 2019. "Efficient Reconstructions of Common Era Climate via Integrated Nested Laplace Approximations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 535-554, September.
    12. Rodrigues, Alexandre & Assunção, Renato, 2008. "Propriety of posterior in Bayesian space varying parameter models with normal data," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2408-2411, October.
    13. Monte Kietpawpan & Parichart Visuthismajarn & Charlchai Tanavud & Mark Robson, 2008. "Method of calculating tsunami travel times in the Andaman Sea region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(1), pages 89-106, July.
    14. Christopher Wikle & Mevin Hooten, 2010. "A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 417-451, November.
    15. Jan Povala & Seppo Virtanen & Mark Girolami, 2020. "Burglary in London: insights from statistical heterogeneous spatial point processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1067-1090, November.
    16. Congdon, Peter, 2006. "A model for non-parametric spatially varying regression effects," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 422-445, January.
    17. Hua Sun & Yong Tu & Shi-Ming Yu, 2005. "A Spatio-Temporal Autoregressive Model for Multi-Unit Residential Market Analysis," The Journal of Real Estate Finance and Economics, Springer, vol. 31(2), pages 155-187, September.
    18. Áron Horváth & Blanka Imre & Zoltán Sápi, 2016. "The International Practice of Statistical Property Valuation Methods and the Possibilities of Introducing Automated Valuation Models in Hungary," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 15(4), pages 45-64.
    19. Zhihua Ma & Yishu Xue & Guanyu Hu, 2019. "Heterogeneous Regression Models for Clusters of Spatial Dependent Data," Papers 1907.02212, arXiv.org, revised Apr 2020.
    20. Thanos, Sotirios & Dubé, Jean & Legros, Diègo, 2016. "Putting time into space: the temporal coherence of spatial applications in the housing market," Regional Science and Urban Economics, Elsevier, vol. 58(C), pages 78-88.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:117:y:2013:i:4:p:843-858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.