IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v21y2010i2p106-116.html
   My bibliography  Save this article

Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: a synthesis

Author

Listed:
  • Vladimir E. Romanovsky
  • Sharon L. Smith
  • Hanne H. Christiansen

Abstract

The permafrost monitoring network in the polar regions of the Northern Hemisphere was enhanced during the International Polar Year (IPY), and new information on permafrost thermal state was collected for regions where there was little available. This augmented monitoring network is an important legacy of the IPY, as is the updated baseline of current permafrost conditions against which future changes may be measured. Within the Northern Hemisphere polar region, ground temperatures are currently being measured in about 575 boreholes in North America, the Nordic region and Russia. These show that in the discontinuous permafrost zone, permafrost temperatures fall within a narrow range, with the mean annual ground temperature (MAGT) at most sites being higher than −2°C. A greater range in MAGT is present within the continuous permafrost zone, from above −1°C at some locations to as low as −15°C. The latest results indicate that the permafrost warming which started two to three decades ago has generally continued into the IPY period. Warming rates are much smaller for permafrost already at temperatures close to 0°C compared with colder permafrost, especially for ice‐rich permafrost where latent heat effects dominate the ground thermal regime. Colder permafrost sites are warming more rapidly. This improved knowledge about the permafrost thermal state and its dynamics is important for multidisciplinary polar research, but also for many of the 4 million people living in the Arctic. In particular, this knowledge is required for designing effective adaptation strategies for the local communities under warmer climatic conditions. Copyright © 2010 John Wiley & Sons, Ltd.

Suggested Citation

  • Vladimir E. Romanovsky & Sharon L. Smith & Hanne H. Christiansen, 2010. "Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: a synthesis," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 21(2), pages 106-116, April.
  • Handle: RePEc:wly:perpro:v:21:y:2010:i:2:p:106-116
    DOI: 10.1002/ppp.689
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.689
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jason R. Paul & Steven V. Kokelj & Jennifer L. Baltzer, 2021. "Spatial and stratigraphic variation of near‐surface ground ice in discontinuous permafrost of the taiga shield," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(1), pages 3-18, January.
    2. C. Derksen & S. Smith & M. Sharp & L. Brown & S. Howell & L. Copland & D. Mueller & Y. Gauthier & C. Fletcher & A. Tivy & M. Bernier & J. Bourgeois & R. Brown & C. Burn & C. Duguay & P. Kushner & A. L, 2012. "Variability and change in the Canadian cryosphere," Climatic Change, Springer, vol. 115(1), pages 59-88, November.
    3. Jeannette Noetzli & Ketil Isaksen & Jamie Barnett & Hanne H. Christiansen & Reynald Delaloye & Bernd Etzelmüller & Daniel Farinotti & Thomas Gallemann & Mauro Guglielmin & Christian Hauck & Christin H, 2024. "Enhanced warming of European mountain permafrost in the early 21st century," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Rúna Í. Magnússon & Alexandra Hamm & Sergey V. Karsanaev & Juul Limpens & David Kleijn & Andrew Frampton & Trofim C. Maximov & Monique M. P. D. Heijmans, 2022. "Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Yanyu Zhang & Shuying Zang & Miao Li & Xiangjin Shen & Yue Lin, 2021. "Spatial Distribution of Permafrost in the Xing’an Mountains of Northeast China from 2001 to 2018," Land, MDPI, vol. 10(11), pages 1-13, October.
    6. Yating Chen & Xiao Cheng & Aobo Liu & Qingfeng Chen & Chengxin Wang, 2023. "Tracking lake drainage events and drained lake basin vegetation dynamics across the Arctic," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Troy J. Bouffard & Ekaterina Uryupova & Klaus Dodds & Vladimir E. Romanovsky & Alec P. Bennett & Dmitry Streletskiy, 2021. "Scientific Cooperation: Supporting Circumpolar Permafrost Monitoring and Data Sharing," Land, MDPI, vol. 10(6), pages 1-17, June.
    8. Tony Pereira, 2012. "The transition to a sustainable society: a new social contract," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 14(2), pages 273-281, April.
    9. Pavel Konstantinov & Nikolai Basharin & Alexander Fedorov & Yoshihiro Iijima & Varvara Andreeva & Valerii Semenov & Nikolai Vasiliev, 2022. "Impact of Climate Change on the Ground Thermal Regime in the Lower Lena Region, Arctic Central Siberia," Land, MDPI, vol. 12(1), pages 1-13, December.
    10. Maosen Fan & Zhuohang Xin & Lei Ye & Changchun Song & Ye Wang & Yuedong Guo, 2023. "Changes in Soil Freeze Depth in Response to Climatic Factors in the High-Latitude Regions of Northeast China," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    11. Yifan Wu & Guojie Hu & Lin Zhao & Defu Zou & Xiaofan Zhu & Yao Xiao & Tonghua Wu & Xiaodong Wu & Youqi Su & Rui Zhang, 2024. "Assessment of Soil Temperature and Its Change Trends in the Permafrost Regions of the Northern Hemisphere," Land, MDPI, vol. 13(7), pages 1-14, July.
    12. Carolina Olid & Valentí Rodellas & Gerard Rocher-Ros & Jordi Garcia-Orellana & Marc Diego-Feliu & Aaron Alorda-Kleinglass & David Bastviken & Jan Karlsson, 2022. "Groundwater discharge as a driver of methane emissions from Arctic lakes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Xiaohui Zhou & Yinao Su & Yuanfang Cheng & Qingchao Li, 2024. "Preliminary Insight into Ice Melting, Surface Subsidence, and Wellhead Instability during Oil and Gas Extraction in Permafrost Region," Energies, MDPI, vol. 17(6), pages 1-21, March.
    14. Liudmila Lebedeva & Nadezhda Pavlova & Ivan Khristoforov, 2022. "Geology, Structure, Ground Temperature and Groundwater Level in Aquifer Taliks in the Shestakovka River Basin, Eastern Siberia," Land, MDPI, vol. 12(1), pages 1-10, December.
    15. Mauro Guglielmin & Stefano Ponti & Emanuele Forte & Nicoletta Cannone, 2021. "Recent thermokarst evolution in the Italian Central Alps," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(2), pages 299-317, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:21:y:2010:i:2:p:106-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.