IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v8y2019i2p103-d235967.html
   My bibliography  Save this article

Assessment of Spatial and Temporal Flow Variability of the Indus River

Author

Listed:
  • Muhammad Arfan

    (USPCAS-W, MUET Sindh, Jamshoro 76090, Pakistan)

  • Jewell Lund

    (Department of Geography, University of Utah, Salt Lake City, UT 84112, USA)

  • Daniyal Hassan

    (Department of Civil & Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA)

  • Maaz Saleem

    (USPCAS-W, MUET Sindh, Jamshoro 76090, Pakistan)

  • Aftab Ahmad

    (USPCAS-W, MUET Sindh, Jamshoro 76090, Pakistan)

Abstract

Considerable controversy exists among researchers over the behavior of glaciers in the Upper Indus Basin (UIB) with regard to climate change. Glacier monitoring studies using the Geographic Information System (GIS) and remote sensing techniques have given rise to contradictory results for various reasons. This uncertain situation deserves a thorough examination of the statistical trends of temperature and streamflow at several gauging stations, rather than relying solely on climate projections. Planning for equitable distribution of water among provinces in Pakistan requires accurate estimation of future water resources under changing flow regimes. Due to climate change, hydrological parameters are changing significantly; consequently the pattern of flows are changing. The present study assesses spatial and temporal flow variability and identifies drought and flood periods using flow data from the Indus River. Trends and variations in river flows were investigated by applying the Mann-Kendall test and Sen’s method. We divide the annual water cycle into two six-month and four three-month seasons based on the local water cycle pattern. A decile indices technique is used to determine drought and flood periods. Overall, the analysis indicates that flow and temperature variabilities are greater seasonally than annually. At the Tarbela Dam, Indus River, annual mean, maximum, and minimum flows decreased steeply from 1986–2010 compared to the 1961–1985 period. Seasonal flow analysis unveils a more complex flow regime: Winter (October–March), (December–February), and spring (March–May) seasons demonstrate increasing flows along with increasing maximum temperature, whereas summer (April–September), (June–August) and autumn (September–November) showed decreasing trends in the flow. Spatial analysis shows that minimum discharge increased at the higher elevation gauging station (Kharmong, 2542 m.a.s.l.) and decreased at the lower elevation gauging station (Tarbela). Over the same timeframe, maximum and mean discharges decreased more substantially at lower elevations than at higher elevations. Drought and flood analysis revealed 2000–2004 to be the driest period in the Indus Basin for this record.

Suggested Citation

  • Muhammad Arfan & Jewell Lund & Daniyal Hassan & Maaz Saleem & Aftab Ahmad, 2019. "Assessment of Spatial and Temporal Flow Variability of the Indus River," Resources, MDPI, vol. 8(2), pages 1-17, May.
  • Handle: RePEc:gam:jresou:v:8:y:2019:i:2:p:103-:d:235967
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/8/2/103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/8/2/103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jane Qiu, 2012. "Glaciologists to target third pole," Nature, Nature, vol. 484(7392), pages 19-19, April.
    2. T. P. Barnett & J. C. Adam & D. P. Lettenmaier, 2005. "Potential impacts of a warming climate on water availability in snow-dominated regions," Nature, Nature, vol. 438(7066), pages 303-309, November.
    3. Jane Qiu, 2008. "China: The third pole," Nature, Nature, vol. 454(7203), pages 393-396, July.
    4. Thomas Jacob & John Wahr & W. Tad Pfeffer & Sean Swenson, 2012. "Recent contributions of glaciers and ice caps to sea level rise," Nature, Nature, vol. 482(7386), pages 514-518, February.
    5. Jonathan Bamber, 2012. "Shrinking glaciers under scrutiny," Nature, Nature, vol. 482(7386), pages 482-483, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Shehzad Ashraf & Muhammad Shahid & Muhammad Waseem & Muhammad Azam & Khalil Ur Rahman, 2023. "Assessment of Variability in Hydrological Droughts Using the Improved Innovative Trend Analysis Method," Sustainability, MDPI, vol. 15(11), pages 1-20, June.
    2. Maaz Saleem & Muhammad Arfan & Kamran Ansari & Daniyal Hassan, 2023. "Analyzing the Impact of Ungauged Hill Torrents on the Riverine Floods of the River Indus: A Case Study of Koh E Suleiman Mountains in the DG Khan and Rajanpur Districts of Pakistan," Resources, MDPI, vol. 12(2), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shakil Ahmad Romshoo & Asif Marazi, 2022. "Impact of climate change on snow precipitation and streamflow in the Upper Indus Basin ending twenty-first century," Climatic Change, Springer, vol. 170(1), pages 1-20, January.
    2. Dalei Hao & Gautam Bisht & Hailong Wang & Donghui Xu & Huilin Huang & Yun Qian & L. Ruby Leung, 2023. "A cleaner snow future mitigates Northern Hemisphere snowpack loss from warming," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Diana R. Gergel & Bart Nijssen & John T. Abatzoglou & Dennis P. Lettenmaier & Matt R. Stumbaugh, 2017. "Effects of climate change on snowpack and fire potential in the western USA," Climatic Change, Springer, vol. 141(2), pages 287-299, March.
    4. Schaefli, Bettina & Manso, Pedro & Fischer, Mauro & Huss, Matthias & Farinotti, Daniel, 2017. "The role of glacier retreat for Swiss hydropower production," Earth Arxiv 7z96d, Center for Open Science.
    5. Haiyan Fang & Zemeng Fan, 2021. "Impacts of climate and land use changes on water and sediment yields for the black soil region, northeastern China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6259-6278, April.
    6. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    7. Donna, Javier & Espin-Sanchez, Jose, 2014. "The Illiquidity of Water Markets," MPRA Paper 55078, University Library of Munich, Germany.
    8. Donna, Javier D. & Espin-Sanchez, Jose, 2018. "Are Water Markets Liquid? Evidence from Southeastern Spain," MPRA Paper 117032, University Library of Munich, Germany.
    9. Shakil Ahmad Romshoo & Jasia Bashir & Irfan Rashid, 2020. "Twenty-first century-end climate scenario of Jammu and Kashmir Himalaya, India, using ensemble climate models," Climatic Change, Springer, vol. 162(3), pages 1473-1491, October.
    10. Marion Réveillet & Marie Dumont & Simon Gascoin & Matthieu Lafaysse & Pierre Nabat & Aurélien Ribes & Rafife Nheili & Francois Tuzet & Martin Ménégoz & Samuel Morin & Ghislain Picard & Paul Ginoux, 2022. "Black carbon and dust alter the response of mountain snow cover under climate change," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Qianhan Wu & Kai Liu & Chunqiao Song & Jida Wang & Linghong Ke & Ronghua Ma & Wensong Zhang & Hang Pan & Xinyuan Deng, 2018. "Remote Sensing Detection of Vegetation and Landform Damages by Coal Mining on the Tibetan Plateau," Sustainability, MDPI, vol. 10(11), pages 1-17, October.
    12. Wei Shi & Fuwei Qiao & Liang Zhou, 2021. "Identification of Ecological Risk Zoning on Qinghai-Tibet Plateau from the Perspective of Ecosystem Service Supply and Demand," Sustainability, MDPI, vol. 13(10), pages 1-17, May.
    13. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    14. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    15. Xinjun He & Anyi Huang & Jianzhong Yan & Hong Zhou & Ya Wu & Liang Emlyn Yang & Basanta Paudel, 2023. "Smallholders’ climate change adaptation strategies on the eastern Tibetan Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 641-667, August.
    16. Vimal Mishra & Reepal Shah & Amit Garg, 2016. "Climate Change in Madhya Pradesh: Indicators, Impacts and Adaptation," Working Papers id:10844, eSocialSciences.
    17. Xiuxue Chen & Xiaofeng Li & Lingjia Gu & Xingming Zheng & Guangrui Wang & Lei Li, 2021. "Increasing Snow–Soil Interface Temperature in Farmland of Northeast China from 1979 to 2018," Agriculture, MDPI, vol. 11(9), pages 1-18, September.
    18. Tobias Siegfried & Thomas Bernauer & Renaud Guiennet & Scott Sellars & Andrew Robertson & Justin Mankin & Peter Bauer-Gottwein & Andrey Yakovlev, 2012. "Will climate change exacerbate water stress in Central Asia?," Climatic Change, Springer, vol. 112(3), pages 881-899, June.
    19. Wang, Weijun & Zhao, Xueyan & Cao, Jianjun & Li, Hua & Zhang, Qin, 2020. "Barriers and requirements to climate change adaptation of mountainous rural communities in developing countries: The case of the eastern Qinghai-Tibetan Plateau of China," Land Use Policy, Elsevier, vol. 95(C).
    20. Dongchuan Wang & Kangjian Wang & Zhiheng Wang & Hongkui Fan & Hua Chai & Hongyi Wang & Hui Long & Jianshe Gao & Jiacheng Xu, 2022. "Spatial-Temporal Evolution and Influencing Mechanism of Traffic Dominance in Qinghai-Tibet Plateau," Sustainability, MDPI, vol. 14(17), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:8:y:2019:i:2:p:103-:d:235967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.