IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v114y2012i2p343-355.html
   My bibliography  Save this article

Assessment of global warming on the island of Tenerife, Canary Islands (Spain). Trends in minimum, maximum and mean temperatures since 1944

Author

Listed:
  • José Martín
  • José Bethencourt
  • Emilio Cuevas-Agulló

Abstract

Temperature variation is studied at different altitudes and orientation on the island of Tenerife, according to the trends in the mean, maximum and minimum at 21 meteorological stations. Reference series are obtained by sectors, along with a representative overall series for Tenerife, in which temperature shows a statistically significant growth trend of 0.09 ± 0.04°C/decade since 1944. Night-time temperatures have risen most (0.17°C ± 0.04°C/decade), while by day they have been more stable. Consequently, the diurnal temperature range between day and night has narrowed. By regions, warming has been much more intense in the high mountains than the other sectors below the inversion layer between 600 and 1,400 m altitude, and progressively milder towards the coast. The temperature rise on the windward (north-northeast) slopes is greater than on the leeward side and could be related to the increase in cloudiness on the northern side. The general warming of the island is less than in continental areas at between 24 and 44ºN, being closer to the sea surface temperature in the same area. This is probably explained largely by the insular conditions. In fact warming is more evident in the high mountains (0.14 ± 0.07°C/decade), where the tempering effect of the ocean and the impact of changes in the stratocumulus is weaker, being similar to the mean continental values in the northern hemisphere. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • José Martín & José Bethencourt & Emilio Cuevas-Agulló, 2012. "Assessment of global warming on the island of Tenerife, Canary Islands (Spain). Trends in minimum, maximum and mean temperatures since 1944," Climatic Change, Springer, vol. 114(2), pages 343-355, September.
  • Handle: RePEc:spr:climat:v:114:y:2012:i:2:p:343-355
    DOI: 10.1007/s10584-012-0407-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0407-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0407-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meinrat O. Andreae & Chris D. Jones & Peter M. Cox, 2005. "Strong present-day aerosol cooling implies a hot future," Nature, Nature, vol. 435(7046), pages 1187-1190, June.
    2. Terry L. Root & Jeff T. Price & Kimberly R. Hall & Stephen H. Schneider & Cynthia Rosenzweig & J. Alan Pounds, 2003. "Fingerprints of global warming on wild animals and plants," Nature, Nature, vol. 421(6918), pages 57-60, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvia Alonso-Pérez & Javier López-Solano & Lourdes Rodríguez-Mayor & José Miguel Márquez-Martinón, 2021. "Evaluation of the Tourism Climate Index in the Canary Islands," Sustainability, MDPI, vol. 13(13), pages 1-12, June.
    2. A. Kosanic & S. Harrison & K. Anderson & I. Kavcic, 2014. "Present and historical climate variability in South West England," Climatic Change, Springer, vol. 124(1), pages 221-237, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayeul Dalleau & Stéphane Ciccione & Jeanne A Mortimer & Julie Garnier & Simon Benhamou & Jérôme Bourjea, 2012. "Nesting Phenology of Marine Turtles: Insights from a Regional Comparative Analysis on Green Turtle (Chelonia mydas)," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    2. Magnus, Jan R. & Melenberg, Bertrand & Muris, Chris, 2011. "Global Warming and Local Dimming: The Statistical Evidence," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 452-464.
    3. Richard Tol, 2011. "Regulating knowledge monopolies: the case of the IPCC," Climatic Change, Springer, vol. 108(4), pages 827-839, October.
    4. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    5. Fabina, Nicholas S. & Abbott, Karen C. & Gilman, R.Tucker, 2010. "Sensitivity of plant–pollinator–herbivore communities to changes in phenology," Ecological Modelling, Elsevier, vol. 221(3), pages 453-458.
    6. Daniel Johansson, 2011. "Temperature stabilization, ocean heat uptake and radiative forcing overshoot profiles," Climatic Change, Springer, vol. 108(1), pages 107-134, September.
    7. Ye, Qing & Yang, Xiaoguang & Dai, Shuwei & Chen, Guangsheng & Li, Yong & Zhang, Caixia, 2015. "Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China," Agricultural Water Management, Elsevier, vol. 159(C), pages 35-44.
    8. Eliseev, Alexey V. & Mokhov, Igor I., 2008. "Eventual saturation of the climate–carbon cycle feedback studied with a conceptual model," Ecological Modelling, Elsevier, vol. 213(1), pages 127-132.
    9. John H Matthews & Bart AJ Wickel & Sarah Freeman, 2011. "Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions," PLOS Biology, Public Library of Science, vol. 9(9), pages 1-4, September.
    10. Lee, Chien-Chiang & Wang, Chih-Wei & Liu, Fengyun, 2024. "Does green credit promote the performance of new energy companies and how? The role of R&D investment and financial development," Renewable Energy, Elsevier, vol. 235(C).
    11. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    12. Rashwan, Sherif S. & Shaaban, Ahmed M. & Al-Suliman, Fahad, 2017. "A comparative study of a small-scale solar PV power plant in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 313-318.
    13. Annie Paradis & Joe Elkinton & Katharine Hayhoe & John Buonaccorsi, 2008. "Role of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North America," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(5), pages 541-554, June.
    14. Robert J. Knell & Stephen J. Thackeray, 2016. "Voltinism and resilience to climate-induced phenological mismatch," Climatic Change, Springer, vol. 137(3), pages 525-539, August.
    15. Rowell, Jonathan T., 2009. "The limitation of species range: A consequence of searching along resource gradients," Theoretical Population Biology, Elsevier, vol. 75(2), pages 216-227.
    16. Lee Hannah & Marc Steele & Emily Fung & Pablo Imbach & Lorriane Flint & Alan Flint, 2017. "Climate change influences on pollinator, forest, and farm interactions across a climate gradient," Climatic Change, Springer, vol. 141(1), pages 63-75, March.
    17. Yuchuan Lai & Matteo Pozzi, 2024. "Sequential learning of climate change via a physical-parameter-based state-space model and Bayesian inference," Climatic Change, Springer, vol. 177(6), pages 1-22, June.
    18. Zdeněk Laštůvka, 2009. "Climate change and its possible influence on the occurrence and importance of insect pests," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 45(SpecialIs), pages 53-62.
    19. Wei Xu & Shuaimeng Zhu & Tianli Yang & Jimin Cheng & Jingwei Jin, 2022. "Maximum Entropy Niche-Based Modeling for Predicting the Potential Suitable Habitats of a Traditional Medicinal Plant ( Rheum nanum ) in Asia under Climate Change Conditions," Agriculture, MDPI, vol. 12(5), pages 1-14, April.
    20. Emiliano Mori & Andrea Sforzi & Giuseppe Bogliani & Pietro Milanesi, 2018. "Range expansion and redefinition of a crop-raiding rodent associated with global warming and temperature increase," Climatic Change, Springer, vol. 150(3), pages 319-331, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:114:y:2012:i:2:p:343-355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.