IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v114y2012i1p145-168.html
   My bibliography  Save this article

The REMIND-R model: the role of renewables in the low-carbon transformation—first-best vs. second-best worlds

Author

Listed:
  • Nico Bauer
  • Lavinia Baumstark
  • Marian Leimbach

Abstract

Can near-term public support of renewable energy technologies contain the increase of mitigation costs due to delays of implementing emission caps at the global level? To answer this question we design a set of first and second best scenarios to analyze the impact of early deployment of renewable energy technologies on welfare and emission timing to achieve atmospheric carbon stabilization by 2100. We use the global multiregional energy–economy–climate hybrid model REMIND-R as a tool for this analysis. An important design feature of the policy scenarios is the timing of climate policy. Immediate climate policy contains the mitigation costs at less than 1% even if the CO 2 concentration target is 410 ppm by 2100. Delayed climate policy increases the costs significantly because the absence of a strong carbon price signal continues the carbon intensive growth path. The additional costs can be decreased by early technology policies supporting renewable energy technologies because emissions grow less, alternative energy technologies are increased in capacity and their costs are reduced through learning by doing. The effects of early technology policy are different in scenarios with immediate carbon pricing. In the case of delayed climate policy, the emission path can be brought closer to the first-best solution, whereas in the case of immediate climate policy additional technology policy would lead to deviations from the optimal emission path. Hence, technology policy in the delayed climate policy case reduces costs, but in the case of immediate climate policy they increase. However, the near-term emission reductions are smaller in the case of delayed climate policies. At the regional level the effects on mitigation costs are heterogeneously distributed. For the USA and Europe early technology policy has a positive welfare effect for immediate and delayed climate policies. In contrast, India looses in both cases. China loses in the case of immediate climate policy, but profits in the delayed case. Early support of renewable energy technologies devalues the stock of emission allowances, and this effect is considerable for delayed climate policies. In combination with the initial allocation rule of contraction and convergence a relatively well-endowed country like India loses and potential importers like the EU gain from early renewable deployment. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Nico Bauer & Lavinia Baumstark & Marian Leimbach, 2012. "The REMIND-R model: the role of renewables in the low-carbon transformation—first-best vs. second-best worlds," Climatic Change, Springer, vol. 114(1), pages 145-168, September.
  • Handle: RePEc:spr:climat:v:114:y:2012:i:1:p:145-168
    DOI: 10.1007/s10584-011-0129-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-011-0129-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-011-0129-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bertrand Magne, Socrates Kypreos, and Hal Turton, 2010. "Technology Options for Low Stabilization Pathways with MERGE," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    2. Ottmar Edenhofer & Kai Lessmann & Claudia Kemfert & Michael Grubb & Jonathan Köhler, 2006. "Induced Technological Change: Exploring its Implications for the Economics of Atmospheric Stabilization: Synthesis Report from the innovation Modeling Comparison Project," The Energy Journal, , vol. 27(1_suppl), pages 57-108, January.
    3. Hans-Werner Sinn, 2008. "Public policies against global warming: a supply side approach," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 15(4), pages 360-394, August.
    4. Reyer Gerlagh & Snorre Kverndokk & Knut Rosendahl, 2009. "Optimal Timing of Climate Change Policy: Interaction Between Carbon Taxes and Innovation Externalities," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 369-390, July.
    5. Detlef P. van Vuuren, Elie Bellevrat, Alban Kitous and Morna Isaac, 2010. "Bio-Energy Use and Low Stabilization Scenarios," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    6. Steven Sorrell, 2003. "Carbon Trading in the Policy Mix," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 19(3), pages 420-437.
    7. Joeri Rogelj & Julia Nabel & Claudine Chen & William Hare & Kathleen Markmann & Malte Meinshausen & Michiel Schaeffer & Kirsten Macey & Niklas Höhne, 2010. "Copenhagen Accord pledges are paltry," Nature, Nature, vol. 464(7292), pages 1126-1128, April.
    8. Manne, Alan & Richels, Richard, 2004. "The impact of learning-by-doing on the timing and costs of CO2 abatement," Energy Economics, Elsevier, vol. 26(4), pages 603-619, July.
    9. Kverndokk, Snorre & Rosendahl, Knut Einar, 2007. "Climate policies and learning by doing: Impacts and timing of technology subsidies," Resource and Energy Economics, Elsevier, vol. 29(1), pages 58-82, January.
    10. Nico Bauer & Ottmar Edenhofer & Socrates Kypreos, 2008. "Linking energy system and macroeconomic growth models," Computational Management Science, Springer, vol. 5(1), pages 95-117, February.
    11. Michael Jakob & Gunnar Luderer & Jan Steckel & Massimo Tavoni & Stephanie Monjon, 2012. "Time to act now? Assessing the costs of delaying climate measures and benefits of early action," Climatic Change, Springer, vol. 114(1), pages 79-99, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, YuXin & Lei, Ping & He, DaYi, 2024. "Endogenous green technology progress, green transition and carbon emissions," International Review of Economics & Finance, Elsevier, vol. 91(C), pages 69-82.
    2. Jessica Strefler & Gunnar Luderer & Tino Aboumahboub & Elmar Kriegler, 2014. "Economic impacts of alternative greenhouse gas emission metrics: a model-based assessment," Climatic Change, Springer, vol. 125(3), pages 319-331, August.
    3. Lombardi, Francesco & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2019. "A multi-layer energy modelling methodology to assess the impact of heat-electricity integration strategies: The case of the residential cooking sector in Italy," Energy, Elsevier, vol. 170(C), pages 1249-1260.
    4. Leimbach, Marian & Roming, Niklas & Schultes, Anselm & Schwerhoff, Gregor, 2018. "Long-Term Development Perspectives of Sub-Saharan Africa under Climate Policies," Ecological Economics, Elsevier, vol. 144(C), pages 148-159.
    5. Henningsen, Arne & Henningsen, Geraldine & van der Werf, Edwin, 2019. "Capital-labour-energy substitution in a nested CES framework: A replication and update of Kemfert (1998)," Energy Economics, Elsevier, vol. 82(C), pages 16-25.
    6. Arroyo-Currás, Tabaré & Bauer, Nico & Kriegler, Elmar & Schwanitz, Valeria Jana & Luderer, Gunnar & Aboumahboub, Tino & Giannousakis, Anastasis & Hilaire, Jérôme, 2015. "Carbon leakage in a fragmented climate regime: The dynamic response of global energy markets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 192-203.
    7. del Río, Pablo, 2017. "Why does the combination of the European Union Emissions Trading Scheme and a renewable energy target makes economic sense?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 824-834.
    8. Zhang, Shuwei & Bauer, Nico & Luderer, Gunnar & Kriegler, Elmar, 2014. "Role of technologies in energy-related CO2 mitigation in China within a climate-protection world: A scenarios analysis using REMIND," Applied Energy, Elsevier, vol. 115(C), pages 445-455.
    9. Phoebe Koundouri & Angelos Alamanos & Jeffrey D Sachs, 2024. "Innovating for Sustainability: The Global Climate Hub," DEOS Working Papers 2403, Athens University of Economics and Business.
    10. Price, James & Keppo, Ilkka, 2017. "Modelling to generate alternatives: A technique to explore uncertainty in energy-environment-economy models," Applied Energy, Elsevier, vol. 195(C), pages 356-369.
    11. Marian Leimbach & Niklas Roming & Gregor Schwerhoff & Anselm Schultes, 2016. "Development perspectives of Sub-Saharan Africa under climate policies," EcoMod2016 9336, EcoMod.
    12. Elmar Kriegler & Ioanna Mouratiadou & Gunnar Luderer & Jae Edmonds & Ottmar Edenhofer, 2016. "Introduction to the RoSE special issue on the impact of economic growth and fossil fuel availability on climate protection," Climatic Change, Springer, vol. 136(1), pages 1-6, May.
    13. Zhang, Shuwei & Bauer, Nico & Yin, Guangzhi & Xie, Xi, 2020. "Technology learning and diffusion at the global and local scales: A modeling exercise in the REMIND model," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    14. Leimbach Marian & Baumstark Lavinia & Luderer Gunnar, 2015. "The Role of Time Preferences in Explaining the Long-Term Pattern of International Trade," Global Economy Journal, De Gruyter, vol. 15(1), pages 83-106, March.
    15. Sebastian Rauner & Jérôme Hilaire & David Klein & Jessica Strefler & Gunnar Luderer, 2020. "Air quality co-benefits of ratcheting up the NDCs," Climatic Change, Springer, vol. 163(3), pages 1481-1500, December.
    16. Elmar Kriegler & Ioanna Mouratiadou & Gunnar Luderer & Nico Bauer & Robert J. Brecha & Katherine Calvin & Enrica Cian & Jae Edmonds & Kejun Jiang & Massimo Tavoni & Ottmar Edenhofer, 2016. "Will economic growth and fossil fuel scarcity help or hinder climate stabilization?," Climatic Change, Springer, vol. 136(1), pages 7-22, May.
    17. Marian Leimbach & Nico Bauer, 2022. "Capital markets and the costs of climate policies," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(3), pages 397-420, July.
    18. Nico Bauer & David Klein & Florian Humpenöder & Elmar Kriegler & Gunnar Luderer & Alexander Popp & Jessica Strefler, 2020. "Bio-energy and CO2 emission reductions: an integrated land-use and energy sector perspective," Climatic Change, Springer, vol. 163(3), pages 1675-1693, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shuwei & Bauer, Nico & Yin, Guangzhi & Xie, Xi, 2020. "Technology learning and diffusion at the global and local scales: A modeling exercise in the REMIND model," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    2. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2013. "Renewable energy subsidies: Second-best policy or fatal aberration for mitigation?," Resource and Energy Economics, Elsevier, vol. 35(3), pages 217-234.
    3. Baldwin, Elizabeth & Cai, Yongyang & Kuralbayeva, Karlygash, 2020. "To build or not to build? Capital stocks and climate policy∗," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    4. Marian Leimbach & Anselm Schultes & Lavinia Baumstark & Anastasis Giannousakis & Gunnar Luderer, 2017. "Solution algorithms for regional interactions in large-scale integrated assessment models of climate change," Annals of Operations Research, Springer, vol. 255(1), pages 29-45, August.
    5. Brigitte Knopf, Ottmar Edenhofer, Christian Flachsland, Marcel T. J. Kok, Hermann Lotze-Campen, Gunnar Luderer, Alexander Popp, Detlef P. van Vuuren, 2010. "Managing the Low-Carbon Transition - From Model Results to Policies," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    6. Mattauch, Linus & Creutzig, Felix & Edenhofer, Ottmar, 2015. "Avoiding carbon lock-in: Policy options for advancing structural change," Economic Modelling, Elsevier, vol. 50(C), pages 49-63.
    7. Gunnar Luderer & Valentina Bosetti & Michael Jakob & Marian Leimbach & Jan Steckel & Henri Waisman & Ottmar Edenhofer, 2012. "The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison," Climatic Change, Springer, vol. 114(1), pages 9-37, September.
    8. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
    9. Grimaud, André & Lafforgue, Gilles & Magné, Bertrand, 2011. "Climate change mitigation options and directed technical change: A decentralized equilibrium analysis," Resource and Energy Economics, Elsevier, vol. 33(4), pages 938-962.
    10. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    11. Coppens, Léo & Dietz, Simon & Venmans, Frank, 2024. "Optimal climate policy under exogenous and endogenous technical change: making sense of the different approaches," LSE Research Online Documents on Economics 124548, London School of Economics and Political Science, LSE Library.
    12. van den Bijgaart, I.M., 2017. "Too slow a change? Deep habits, consumption shifts and transitory tax," Working Papers in Economics 701, University of Gothenburg, Department of Economics.
    13. Ottmar Edenhofer & Susanne Kadner & Christoph von Stechow & Gregor Schwerhoff & Gunnar Luderer, 2014. "Linking climate change mitigation research to sustainable development," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 30, pages 476-499, Edward Elgar Publishing.
    14. Gerlagh , Reyer & Kverndokk , Snorre & Rosendahl , Knut Einar, 2007. "Optimal Timing of Environmental Policy: Interaction Between Environmental Taxes and Innovation Externalities," Memorandum 26/2006, Oslo University, Department of Economics.
    15. Armon Rezai & Frederick Van Der Ploeg, 2017. "Abandoning Fossil Fuel: How Fast and How Much," Manchester School, University of Manchester, vol. 85(S2), pages 16-44, December.
    16. Michael Grubb & Jean-Francois Mercure & Pablo Salas & Rutger-Jan Lange & Ida Sognnaes, 2018. "Systems Innovation, Inertia and Pliability: A mathematical exploration with implications for climate change abatement," Working Papers EPRG 1808, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    17. Traber, Thure & Kemfert, Claudia, 2011. "Refunding ETS proceeds to spur the diffusion of renewable energies: An analysis based on the dynamic oligopolistic electricity market model EMELIE," Utilities Policy, Elsevier, vol. 19(1), pages 33-41, January.
    18. Durand-Lasserve, Olivier & Pierru, Axel & Smeers, Yves, 2010. "Uncertain long-run emissions targets, CO2 price and global energy transition: A general equilibrium approach," Energy Policy, Elsevier, vol. 38(9), pages 5108-5122, September.
    19. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    20. Armon Rezai & Frederick Ploeg, 2017. "Second-Best Renewable Subsidies to De-carbonize the Economy: Commitment and the Green Paradox," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 409-434, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:114:y:2012:i:1:p:145-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.