IDEAS home Printed from https://ideas.repec.org/p/ler/wpaper/09.20.296.html
   My bibliography  Save this paper

Climate change mitigation options and directed technical change: A decentralized equilibrium analysis

Author

Listed:
  • GRIMAUD Andre
  • LAFFORGUE Gilles
  • MAGNE Bertrand

Abstract

The paper considers a climate change growth model with three R&D sectors dedicated to energy, backstop and CCS (Carbon Capture and Storage) efficiency. First, we characterize the set of decentralized equilibria: A particular equilibrium is associated to each vector of public tools which includes a carbon tax and a subsidy to each R&D sector. Moreover, we show that it is possible to compute any equilibrium as the solution of a maximization program. Second, we solve the first-best optimum problem and we implement it by computing the vector of optimal tools. Finally, we illustrate the theoretical model using some calibrated functional specifications. In particular, we investigate the effects of various combinations of public policies (including the optimal ones) by determining the deviation of each corresponding equilibrium from the "laisser-faire" benchmark.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another vers
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • GRIMAUD Andre & LAFFORGUE Gilles & MAGNE Bertrand, 2009. "Climate change mitigation options and directed technical change: A decentralized equilibrium analysis," LERNA Working Papers 09.20.296, LERNA, University of Toulouse.
  • Handle: RePEc:ler:wpaper:09.20.296
    as

    Download full text from publisher

    File URL: http://www2.toulouse.inra.fr/lerna/travaux/cahiers2009/09.20.296.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. André Grimaud & Gilles Lafforgue, 2008. "Climate change mitigation policies : Are R&D subsidies preferable to a carbon tax ?," Revue d'économie politique, Dalloz, vol. 118(6), pages 915-940.
    2. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    3. Benassy, Jean-Pascal, 1998. "Is there always too little research in endogenous growth with expanding product variety?," European Economic Review, Elsevier, vol. 42(1), pages 61-69, January.
    4. Nordhaus, William, 2011. "Designing a friendly space for technological change to slow global warming," Energy Economics, Elsevier, vol. 33(4), pages 665-673, July.
    5. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    6. Jones, Charles I & Williams, John C, 2000. "Too Much of a Good Thing? The Economics of Investment in R&D," Journal of Economic Growth, Springer, vol. 5(1), pages 65-85, March.
    7. Lafforgue, Gilles & Magné, Bertrand & Moreaux, Michel, 2008. "Energy substitutions, climate change and carbon sinks," Ecological Economics, Elsevier, vol. 67(4), pages 589-597, November.
    8. Gerlagh, Reyer & Lise, Wietze, 2005. "Carbon taxes: A drop in the ocean, or a drop that erodes the stone? The effect of carbon taxes on technological change," Ecological Economics, Elsevier, vol. 54(2-3), pages 241-260, August.
    9. Gerlagh, Reyer & Kverndokk, Snorre & Rosendahl, Knut Einar, 2008. "Linking Environmental and Innovation Policy," Economic Theory and Applications Working Papers 37847, Fondazione Eni Enrico Mattei (FEEM).
    10. Farzin, Y H & Tahvonen, O, 1996. "Global Carbon Cycle and the Optimal Time Path of a Carbon Tax," Oxford Economic Papers, Oxford University Press, vol. 48(4), pages 515-536, October.
    11. Hoel, Michael & Kverndokk, Snorre, 1996. "Depletion of fossil fuels and the impacts of global warming," Resource and Energy Economics, Elsevier, vol. 18(2), pages 115-136, June.
    12. Reyer Gerlagh & Bob van der Zwaan, 2006. "Options and Instruments for a Deep Cut in CO2 Emissions: Carbon Dioxide Capture or Renewables, Taxes or Subsidies?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 25-48.
    13. G. M.P. Swann, 2009. "The Economics of Innovation," Books, Edward Elgar Publishing, number 13211.
    14. Grimaud, Andre & Tournemaine, Frederic, 2007. "Why can an environmental policy tax promote growth through the channel of education?," Ecological Economics, Elsevier, vol. 62(1), pages 27-36, April.
    15. Ottmar Edenhofer & Kai Lessmann & Nico Bauer, 2006. "Mitigation Strategies and Costs of Climate Protection: The Effects of ETC in the Hybrid Model MIND," The Energy Journal, , vol. 27(1_suppl), pages 207-222, January.
    16. Kolstad, Charles D. & Toman, Michael, 2005. "The Economics of Climate Policy," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 3, chapter 30, pages 1561-1618, Elsevier.
    17. Reyer Gerlagh, 2006. "ITC in a Global Growth-Climate Model with CCS: The Value of Induced Technical Change for Climate Stabilization," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 223-240.
    18. Sinclair, Peter J N, 1994. "On the Optimum Trend of Fossil Fuel Taxation," Oxford Economic Papers, Oxford University Press, vol. 46(0), pages 869-877, Supplemen.
    19. Pohjola, Matti (ed.), 2001. "Information Technology, Productivity, and Economic Growth: International Evidence and Implications for Economic Development," OUP Catalogue, Oxford University Press, number 9780199243983.
    20. Edenhofer, Ottmar & Bauer, Nico & Kriegler, Elmar, 2005. "The impact of technological change on climate protection and welfare: Insights from the model MIND," Ecological Economics, Elsevier, vol. 54(2-3), pages 277-292, August.
    21. Fischer, Carolyn & Parry, Ian W. H. & Pizer, William A., 2003. "Instrument choice for environmental protection when technological innovation is endogenous," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 523-545, May.
    22. Valentina Bosetti, Carlo Carraro and Marzio Galeotti, 2006. "The Dynamics of Carbon and Energy Intensity in a Model of Endogenous Technical Change," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 191-206.
    23. Charles I. Jones & John C. Williams, 1998. "Measuring the Social Return to R&D," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1119-1135.
    24. Hans-Werner Sinn, 2008. "Public policies against global warming: a supply side approach," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 15(4), pages 360-394, August.
    25. Hart, Rob, 2008. "The timing of taxes on CO2 emissions when technological change is endogenous," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 194-212, March.
    26. William D. Nordhaus, 2006. "After Kyoto: Alternative Mechanisms to Control Global Warming," American Economic Review, American Economic Association, vol. 96(2), pages 31-34, May.
    27. Reyer Gerlagh & Snorre Kverndokk & Knut Rosendahl, 2009. "Optimal Timing of Climate Change Policy: Interaction Between Carbon Taxes and Innovation Externalities," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 369-390, July.
    28. Popp, David, 2006. "ENTICE-BR: The effects of backstop technology R&D on climate policy models," Energy Economics, Elsevier, vol. 28(2), pages 188-222, March.
    29. Chakravorty, Ujjayant & Magne, Bertrand & Moreaux, Michel, 2006. "A Hotelling model with a ceiling on the stock of pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2875-2904, December.
    30. André Grimaud & Luc Rouge, 2008. "Environment, Directed Technical Change and Economic Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 41(4), pages 439-463, December.
    31. Nemet, Gregory F. & Kammen, Daniel M., 2007. "U.S. energy research and development: Declining investment, increasing need, and the feasibility of expansion," Energy Policy, Elsevier, vol. 35(1), pages 746-755, January.
    32. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    33. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    34. Bergstrom, Theodore C, 1982. "On Capturing Oil Rents with a National Excise Tax," American Economic Review, American Economic Association, vol. 72(1), pages 194-201, March.
    35. Sinclair, P.J.N., 1994. "On the Optimum Trend of Fossil Fuel Taxation," Discussion Papers 94-16, Department of Economics, University of Birmingham.
    36. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
    37. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Sgobbi, Alessandra & Tavoni, Massimo, 2009. "Optimal energy investment and R&D strategies to stabilize atmospheric greenhouse gas concentrations," Resource and Energy Economics, Elsevier, vol. 31(2), pages 123-137, May.
    38. David Popp, 2006. "Comparison of Climate Policies in the ENTICE-BR Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 163-174.
    39. William D. Nordhaus, 2007. "A Review of the Stern Review on the Economics of Climate Change," Journal of Economic Literature, American Economic Association, vol. 45(3), pages 686-702, September.
    40. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    41. Ulph, Alistair & Ulph, David, 1994. "The Optimal Time Path of a Carbon Tax," Oxford Economic Papers, Oxford University Press, vol. 46(0), pages 857-868, Supplemen.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grimaud, André & Lafforgue, Gilles & Magné, Bertrand, 2008. "Decentralized Equilibrium Analysis in a Growth Model with Directed Technical Change and Climate Change Mitigation," IDEI Working Papers 537, Institut d'Économie Industrielle (IDEI), Toulouse.
    2. Grimaud, André & Lafforgue, Gilles & Magné, Bertrand, 2007. "Innovation Markets in the Policy Appraisal of Climate Change Mitigation," IDEI Working Papers 481, Institut d'Économie Industrielle (IDEI), Toulouse.
    3. André Grimaud & Gilles Lafforgue, 2008. "Climate change mitigation policies : Are R&D subsidies preferable to a carbon tax ?," Revue d'économie politique, Dalloz, vol. 118(6), pages 915-940.
    4. GRIMAUD André & LAFFORGUE Gilles & MAGNE Bertrand, 2007. "Economic growth and Climate change in a decentralized Economy: A Theoretical and Empirical Approach," LERNA Working Papers 07.04.225, LERNA, University of Toulouse.
    5. GRIMAUD André & LAFFORGUE Gilles, 2008. "Second Best Analysis in a General Equilibrium Climate Change Model," LERNA Working Papers 08.11.255, LERNA, University of Toulouse.
    6. Grimaud, André & Rouge, Luc, 2014. "Carbon sequestration, economic policies and growth," Resource and Energy Economics, Elsevier, vol. 36(2), pages 307-331.
    7. Oscar Afonso & Ana Catarina Afonso, 2015. "Endogenous Growth Effects of Environmental Policies," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 62(5), pages 607-629, December.
    8. Shiell, Leslie & Lyssenko, Nikita, 2014. "Climate policy and induced R&D: How great is the effect?," Energy Economics, Elsevier, vol. 46(C), pages 279-294.
    9. Grimaud, André & Magné, Bertrand & Rougé, Luc, 2009. "Polluting Non-Renewable Resources, Carbon Abatement and Climate Policy in a Romer Growth Model," TSE Working Papers 09-023, Toulouse School of Economics (TSE).
    10. André Grimaud & Luc Rouge, 2009. "Séquestration du carbone et politique climatique optimale," Économie et Prévision, Programme National Persée, vol. 190(4), pages 53-69.
    11. Schmidt, Robert C. & Marschinski, Robert, 2009. "A model of technological breakthrough in the renewable energy sector," Ecological Economics, Elsevier, vol. 69(2), pages 435-444, December.
    12. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    13. Grimaud, André & Magné, Bertrand & Rougé, Luc, 2008. "Carbon Storage in a Growth Model with Climate and R&D Policy," IDEI Working Papers 536, Institut d'Économie Industrielle (IDEI), Toulouse.
    14. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    15. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    16. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2014. "Optimal Timing of Carbon Capture and Storage Policies Under Learning-by-doing," IDEI Working Papers 824, Institut d'Économie Industrielle (IDEI), Toulouse, revised May 2014.
    17. Popp, David & Newell, Richard, 2012. "Where does energy R&D come from? Examining crowding out from energy R&D," Energy Economics, Elsevier, vol. 34(4), pages 980-991.
    18. Durmaz, Tunç, 2018. "The economics of CCS: Why have CCS technologies not had an international breakthrough?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 328-340.
    19. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2016. "Optimal timing of carbon capture policies under learning-by-doing," Journal of Environmental Economics and Management, Elsevier, vol. 78(C), pages 20-37.
    20. Hoel, Michael & Jensen, Svenn, 2012. "Cutting costs of catching carbon—Intertemporal effects under imperfect climate policy," Resource and Energy Economics, Elsevier, vol. 34(4), pages 680-695.

    More about this item

    JEL classification:

    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ler:wpaper:09.20.296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maxime MARTY (email available below). General contact details of provider: https://edirc.repec.org/data/lrtlsfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.