IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v108y2011i1p159-184.html
   My bibliography  Save this article

Greenhouse gas taxes on animal food products: rationale, tax scheme and climate mitigation effects

Author

Listed:
  • Stefan Wirsenius
  • Fredrik Hedenus
  • Kristina Mohlin

Abstract

No abstract is available for this item.

Suggested Citation

  • Stefan Wirsenius & Fredrik Hedenus & Kristina Mohlin, 2011. "Greenhouse gas taxes on animal food products: rationale, tax scheme and climate mitigation effects," Climatic Change, Springer, vol. 108(1), pages 159-184, September.
  • Handle: RePEc:spr:climat:v:108:y:2011:i:1:p:159-184
    DOI: 10.1007/s10584-010-9971-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-010-9971-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-010-9971-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alan S. Manne & Richard G. Richels, 2001. "An alternative approach to establishing trade-offs among greenhouse gases," Nature, Nature, vol. 410(6829), pages 675-677, April.
    2. Karagiannis, G. & Katranidis, S. & Velentzas, K., 2000. "An error correction almost ideal demand system for meat in Greece," Agricultural Economics, Blackwell, vol. 22(1), pages 29-35, January.
    3. Fousekis, Panos & Revell, Brian J., 2000. "Meat Demand in the UK: A Differential Approach," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 32(1), pages 11-19, April.
    4. Wirsenius, Stefan & Azar, Christian & Berndes, Göran, 2010. "How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030?," Agricultural Systems, Elsevier, vol. 103(9), pages 621-638, November.
    5. Stefan Wirsenius, 2003. "The Biomass Metabolism of the Food System: A Model‐Based Survey of the Global and Regional Turnover of Food Biomass," Journal of Industrial Ecology, Yale University, vol. 7(1), pages 47-80, January.
    6. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    7. John P. Weyant, Francisco C. de la Chesnaye, and Geoff J. Blanford, 2006. "Overview of EMF-21: Multigas Mitigation and Climate Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-32.
    8. Schmutzler, Armin & Goulder, Lawrence H., 1997. "The Choice between Emission Taxes and Output Taxes under Imperfect Monitoring," Journal of Environmental Economics and Management, Elsevier, vol. 32(1), pages 51-64, January.
    9. Burton, Michael & Young, Trevor, 1992. "The Structure of Changing Tastes for Meat and Fish in Great Britain," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 19(2), pages 165-180.
    10. J. Reilly & R. Prinn & J. Harnisch & J. Fitzmaurice & H. Jacoby & D. Kicklighter & J. Melillo & P. Stone & A. Sokolov & C. Wang, 1999. "Multi-gas assessment of the Kyoto Protocol," Nature, Nature, vol. 401(6753), pages 549-555, October.
    11. Thomassen, M.A. & van Calker, K.J. & Smits, M.C.J. & Iepema, G.L. & de Boer, I.J.M., 2008. "Life cycle assessment of conventional and organic milk production in the Netherlands," Agricultural Systems, Elsevier, vol. 96(1-3), pages 95-107, March.
    12. Alain Carpentier & Hervé Guyomard, 2001. "Unconditional Elasticities in Two-Stage Demand Systems: An Approximate Solution," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(1), pages 222-229.
    13. Olivier Allais & Véronique Nichèle, 2007. "Capturing structural changes in French meat and fish demand over the period 1991--2002," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 34(4), pages 517-538, December.
    14. Robert H. Beach & Benjamin J. DeAngelo & Steven Rose & Changsheng Li & William Salas & Stephen J. DelGrosso, 2008. "Mitigation potential and costs for global agricultural greenhouse gas emissions-super-1," Agricultural Economics, International Association of Agricultural Economists, vol. 38(2), pages 109-115, March.
    15. Iain Fraser & Imad A. Moosa, 2002. "Demand Estimation in the Presence of Stochastic Trend and Seasonality: The Case of Meat Demand in the United Kingdom," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(1), pages 83-89.
    16. Lovett, D.K. & Shalloo, L. & Dillon, P. & O'Mara, F.P., 2006. "A systems approach to quantify greenhouse gas fluxes from pastoral dairy production as affected by management regime," Agricultural Systems, Elsevier, vol. 88(2-3), pages 156-179, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Johansson, 2012. "Economics- and physical-based metrics for comparing greenhouse gases," Climatic Change, Springer, vol. 110(1), pages 123-141, January.
    2. Kerkhof, Annemarie C. & Moll, Henri C. & Drissen, Eric & Wilting, Harry C., 2008. "Taxation of multiple greenhouse gases and the effects on income distribution: A case study of the Netherlands," Ecological Economics, Elsevier, vol. 67(2), pages 318-326, September.
    3. Johansson, Daniel J.A., 2009. "Economics vs. Physical-based Metrics for Relative Greenhouse Gas Valuations," Working Papers in Economics 363, University of Gothenburg, Department of Economics.
    4. Jessica Strefler & Gunnar Luderer & Tino Aboumahboub & Elmar Kriegler, 2014. "Economic impacts of alternative greenhouse gas emission metrics: a model-based assessment," Climatic Change, Springer, vol. 125(3), pages 319-331, August.
    5. Tol, Richard S.J., 2012. "A cost–benefit analysis of the EU 20/20/2020 package," Energy Policy, Elsevier, vol. 49(C), pages 288-295.
    6. Khellaf, Ayache & Nihou, Abdelaziz & Baray, Abdoul G. & van der Mensbrugghe, Dominique & Liverani, Andrea & Tyner, Wallace E., 2014. "Socioeconomic impacts of green energy growth policy in Morocco - a general equilibrium analysis," Conference papers 332493, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    7. J. West & Arlene Fiore & Larry Horowitz, 2012. "Scenarios of methane emission reductions to 2030: abatement costs and co-benefits to ozone air quality and human mortality," Climatic Change, Springer, vol. 114(3), pages 441-461, October.
    8. Innocent Bakam & Robin Matthews, 2009. "Emission trading in agriculture: a study of design options using an agent-based approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(8), pages 755-776, December.
    9. Säll, Sarah & Gren, Ing-Marie, 2015. "Effects of an environmental tax on meat and dairy consumption in Sweden," Food Policy, Elsevier, vol. 55(C), pages 41-53.
    10. Thomassen, M.A. & Dolman, M.A. & van Calker, K.J. & de Boer, I.J.M., 2009. "Relating life cycle assessment indicators to gross value added for Dutch dairy farms," Ecological Economics, Elsevier, vol. 68(8-9), pages 2278-2284, June.
    11. Mathijs J. H. M. Harmsen & Maarten Berg & Volker Krey & Gunnar Luderer & Adriana Marcucci & Jessica Strefler & Detlef P. Van Vuuren, 2016. "How climate metrics affect global mitigation strategies and costs: a multi-model study," Climatic Change, Springer, vol. 136(2), pages 203-216, May.
    12. Lungarska, Anna & Chakir, Raja, 2018. "Climate-induced Land Use Change in France: Impacts of Agricultural Adaptation and Climate Change Mitigation," Ecological Economics, Elsevier, vol. 147(C), pages 134-154.
    13. Antonia Weishaupt & Felix Ekardt & Beatrice Garske & Jessica Stubenrauch & Jutta Wieding, 2020. "Land Use, Livestock, Quantity Governance, and Economic Instruments—Sustainability Beyond Big Livestock Herds and Fossil Fuels," Sustainability, MDPI, vol. 12(5), pages 1-27, March.
    14. Tol, Richard S.J., 2013. "Targets for global climate policy: An overview," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 911-928.
    15. Peters, Christian J. & Picardy, Jamie A. & Darrouzet-Nardi, Amelia & Griffin, Timothy S., 2014. "Feed conversions, ration compositions, and land use efficiencies of major livestock products in U.S. agricultural systems," Agricultural Systems, Elsevier, vol. 130(C), pages 35-43.
    16. Vermont, Bruno & De Cara, Stéphane, 2010. "How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?: A meta-analysis," Ecological Economics, Elsevier, vol. 69(7), pages 1373-1386, May.
    17. Fousekis, Panos & Revell, Brian J., 2002. "Primary Demand for Red Meats in the United Kingdom," Cahiers d'Economie et de Sociologie Rurales (CESR), Institut National de la Recherche Agronomique (INRA), vol. 63.
    18. de Cara, Stephane & Houze, Martin & Jayet, Pierre-Alain, 2004. "Greenhouse gas emissions from agriculture in the EU: A spatial assessment of sources and abatement costs," 2004 Conference (48th), February 11-13, 2004, Melbourne, Australia 58401, Australian Agricultural and Resource Economics Society.
    19. Yunfa Zhu & Madanmohan Ghosh & Deming Luo & Nick Macaluso & Jacob Rattray, 2018. "Revenue Recycling And Cost Effective Ghg Abatement: An Exploratory Analysis Using A Global Multi-Sector Multi-Region Cge Model," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-25, February.
    20. Rose, Steven K. & Ahammad, Helal & Eickhout, Bas & Fisher, Brian & Kurosawa, Atsushi & Rao, Shilpa & Riahi, Keywan & van Vuuren, Detlef P., 2012. "Land-based mitigation in climate stabilization," Energy Economics, Elsevier, vol. 34(1), pages 365-380.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:108:y:2011:i:1:p:159-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.