IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v31y2023i1d10.1007_s10100-022-00802-8.html
   My bibliography  Save this article

Clustering mixed-type player behavior data for churn prediction in mobile games

Author

Listed:
  • Ana Perišić

    (University of Split
    Polytechnic of Šibenik)

  • Marko Pahor

    (University of Ljubljana)

Abstract

Marketers have long since understood the importance of customer segmentation and customer churn prediction modelling. However, linking these processes remains a challenge. Customer segmentation is often performed by applying a clustering algorithm on customer behavioral data, which is another challenging task since datasets on customer behavior typically comprise mixed-data types. This research focuses on clustering player behavior data for churn prediction modelling in the mobile games market and constructing a dissimilarity measure capable of simultaneously handling categorical and quantitative data. The problem of finding an appropriate dissimilarity measure for mixed-type data with unbalanced categorical features and highly skewed numerical features is handled by establishing a hybrid dissimilarity measure constructed as a normalized linear combination of distances. Distances are calculated conditional on feature type following the principles of Gower’s coefficient calculation where for numerical features, distances are calculated by applying a modified winsorized Huber loss, while for categorical features, we incorporate a distance measure based on variable entropy. In conjunction with the PAM clustering algorithm, the established dissimilarity measure is applied on real-world datasets and the performance is compared to several state-of-the-art clustering algorithms. Secondly, this research investigates the potential of customer segmentation as an integral part of churn prediction modelling in online games which is operationalized by applying the proposed clustering method on a real dataset comprising mixed-type data originating from a casual mobile game. The benefits of customer segmentation are supported by the data since churn prediction models exhibit higher performance when the clustering is performed prior to churn classification.

Suggested Citation

  • Ana Perišić & Marko Pahor, 2023. "Clustering mixed-type player behavior data for churn prediction in mobile games," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(1), pages 165-190, March.
  • Handle: RePEc:spr:cejnor:v:31:y:2023:i:1:d:10.1007_s10100-022-00802-8
    DOI: 10.1007/s10100-022-00802-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-022-00802-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-022-00802-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zdeněk Šulc & Hana Řezanková, 2019. "Comparison of Similarity Measures for Categorical Data in Hierarchical Clustering," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 58-72, April.
    2. Zhang, Peng & Wang, Xiaogang & Song, Peter X.K., 2006. "Clustering Categorical Data Based on Distance Vectors," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 355-367, March.
    3. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    4. Seungwook Kim & Daeyoung Choi & Eunjung Lee & Wonjong Rhee, 2017. "Churn prediction of mobile and online casual games using play log data," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duygu Üçüncü & Süreyya Akyüz & Erdal Gül, 2024. "A novel auto-pruned ensemble clustering via SOCP," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(3), pages 819-841, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isabella Morlini & Sergio Zani, 2012. "A New Class of Weighted Similarity Indices Using Polytomous Variables," Journal of Classification, Springer;The Classification Society, vol. 29(2), pages 199-226, July.
    2. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    3. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    4. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    5. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    6. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    7. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    8. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    9. A van Giessen & K G M Moons & G A de Wit & W M M Verschuren & J M A Boer & H Koffijberg, 2015. "Tailoring the Implementation of New Biomarkers Based on Their Added Predictive Value in Subgroups of Individuals," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-14, January.
    10. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    11. Stefano Tonellato & Andrea Pastore, 2013. "On the comparison of model-based clustering solutions," Working Papers 2013:05, Department of Economics, University of Venice "Ca' Foscari".
    12. Elvira Pelle & Roberta Pappadà, 2021. "A clustering procedure for mixed-type data to explore ego network typologies: an application to elderly people living alone in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1507-1533, December.
    13. Renato Cordeiro Amorim, 2016. "A Survey on Feature Weighting Based K-Means Algorithms," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 210-242, July.
    14. Tom Wilderjans & Eva Ceulemans & Iven Mechelen, 2008. "The CHIC Model: A Global Model for Coupled Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 73(4), pages 729-751, December.
    15. Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
    16. Yuchen Liang & Guowei Shi & Runlin Cai & Yuchen Yuan & Ziying Xie & Long Yu & Yingjian Huang & Qian Shi & Lizhe Wang & Jun Li & Zhonghui Tang, 2024. "PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Jeffrey Andrews & Paul McNicholas, 2014. "Variable Selection for Clustering and Classification," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 136-153, July.
    18. Marek Obrębalski & Marek Walesiak, 2015. "Functional structure of Polish regions in the period 2004-2013 – measurement via HHI Index, Florence’s coefficient of localization and cluster analysis," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(2), pages 223-242, June.
    19. Luca Scaffidi Domianello & Giampiero M. Gallo & Edoardo Otranto, 2024. "Smooth and Abrupt Dynamics in Financial Volatility: The MS‐MEM‐MIDAS," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(1), pages 21-43, February.
    20. Paul Bastide & Mahendra Mariadassou & Stéphane Robin, 2017. "Detection of adaptive shifts on phylogenies by using shifted stochastic processes on a tree," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1067-1093, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:31:y:2023:i:1:d:10.1007_s10100-022-00802-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.