IDEAS home Printed from https://ideas.repec.org/a/spr/bioerq/v3y2018i3d10.1007_s41247-018-0040-9.html
   My bibliography  Save this article

A System Dynamics Assessment of the Supply of Molybdenum and Rhenium Used for Super-alloys and Specialty Steels, Using the WORLD6 Model

Author

Listed:
  • Harald Ulrik Sverdrup

    (University of Iceland)

  • Anna Hulda Olafsdottir

    (University of Iceland)

  • Kristin Vala Ragnarsdottir

    (University of Iceland)

  • Deniz Koca

    (Lund University)

Abstract

The extraction, supply, market price and recycling of the metals molybdenum and rhenium were modelled using an integrated system dynamics model. The resource estimates made here resulted in significantly larger estimates than earlier studies for molybdenum. Present molybdenum resources are about 75–80 million ton and about 7 million ton has been mined to date. The ultimately recoverable resources (URR) for molybdenum are about 65 million in primary resources and about 45 million ton in secondary sources, a total of about 111 million ton, and after considering technical extractability, evaluating several hundred different geological deposits, the extractable amount is about 90 million ton. For rhenium, URR is about 21,000 ton contained in mostly in molybdenum and copper, but some come from nickel, wolfram and platinum group metal ores. The model outputs show that molybdenum and rhenium are finite resources, and that they may become exhausted unless the degree of recycling will be significantly improved. Peak production is estimated to take place in 2060 for molybdenum and rhenium, with peak in stocks-in-use around 2090. The molybdenum and rhenium recycling rates are generally low. Both market intervention mechanisms and governance incentives should be used to increase recycling. The metal extraction and ore grades were modelled with good success when tested against observed data. The model predicts a significant decline in molybdenum supply after 2100 under the present demand combined with the present regime of recycling. The supply situation for rhenium is dependent on the situation applicable for molybdenum ore availability and rhenium recycling rate.

Suggested Citation

  • Harald Ulrik Sverdrup & Anna Hulda Olafsdottir & Kristin Vala Ragnarsdottir & Deniz Koca, 2018. "A System Dynamics Assessment of the Supply of Molybdenum and Rhenium Used for Super-alloys and Specialty Steels, Using the WORLD6 Model," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-43, September.
  • Handle: RePEc:spr:bioerq:v:3:y:2018:i:3:d:10.1007_s41247-018-0040-9
    DOI: 10.1007/s41247-018-0040-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41247-018-0040-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41247-018-0040-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anna Hulda Olafsdottir & Harald Ulrik Sverdrup, 2018. "Modelling Global Mining, Secondary Extraction, Supply, Stocks-in-Society, Recycling, Market Price and Resources, Using the WORLD6 Model; Tin," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-17, September.
    2. Nieć, Marek & Galos, Krzysztof & Szamałek, Krzysztof, 2014. "Main challenges of mineral resources policy of Poland," Resources Policy, Elsevier, vol. 42(C), pages 93-103.
    3. Tilton, John E. & Lagos, Gustavo, 2007. "Assessing the long-run availability of copper," Resources Policy, Elsevier, vol. 32(1-2), pages 19-23.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harald Ulrik Sverdrup & Antoniy Elias Sverdrup, 2024. "On the Supply Dynamics of Scandium, Global Resources, Production, Oxide and Metal Price, a Prospective Modelling Study Using WORLD7," Biophysical Economics and Resource Quality, Springer, vol. 9(2), pages 1-22, June.
    2. Werner, Tim T. & Mudd, Gavin M. & Jowitt, Simon M. & Huston, David, 2023. "Rhenium mineral resources: A global assessment," Resources Policy, Elsevier, vol. 82(C).
    3. Harald Ulrik Sverdrup & Anna Hulda Olafsdottir, 2020. "Conceptualization and parameterization of the market price mechanism in the WORLD6 model for metals, materials, and fossil fuels," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(3), pages 285-310, October.
    4. Olafsdottir, Anna Hulda & Sverdrup, Harald Ulrik, 2019. "Defining a Conceptual Model for Market Mechanisms in Food Supply Chains, and Parameterizing Price Functions for Coffee, Wheat, Corn, Soybeans and Beef," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 10(02), April.
    5. Anna Hulda Olafsdottir & Harald Ulrik Sverdrup, 2020. "Assessing the Past and Future Sustainability of Global Helium Resources, Extraction, Supply and Use, Using the Integrated Assessment Model WORLD7," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-18, June.
    6. Harald Ulrik Sverdrup & Anna Hulda Olafsdottir, 2018. "A System Dynamics Model Assessment of the Supply of Niobium and Tantalum Using the WORLD6 Model," Biophysical Economics and Resource Quality, Springer, vol. 3(2), pages 1-35, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harald Ulrik Sverdrup & Anna Hulda Olafsdottir, 2018. "A System Dynamics Model Assessment of the Supply of Niobium and Tantalum Using the WORLD6 Model," Biophysical Economics and Resource Quality, Springer, vol. 3(2), pages 1-35, June.
    2. Guo, Tianjiao & Geng, Yong & Song, Xiaoqian & Rui, Xue & Ge, Zewen, 2023. "Tracing magnesium flows in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 83(C).
    3. Larona S. Teseletso & Tsuyoshi Adachi, 2022. "Long-Term Sustainability of Copper and Iron Based on a System Dynamics Model," Resources, MDPI, vol. 11(4), pages 1-19, April.
    4. Alicja Kot-Niewiadomska & Krzysztof Galos & Jarosław Kamyk, 2021. "Safeguarding of Key Minerals Deposits as a Basis of Sustainable Development of Polish Economy," Resources, MDPI, vol. 10(5), pages 1-32, May.
    5. Guzmán, Juan Ignacio & Karpunina, Alina & Araya, Constanza & Faúndez, Patricio & Bocchetto, Marcela & Camacho, Rodolfo & Desormeaux, Daniela & Galaz, Juanita & Garcés, Ingrid & Kracht, Willy & Lagos, , 2023. "Chile: On the road to global sustainable mining," Resources Policy, Elsevier, vol. 83(C).
    6. Gordon, R.B. & Bertram, M. & Graedel, T.E., 2007. "On the sustainability of metal supplies: A response to Tilton and Lagos," Resources Policy, Elsevier, vol. 32(1-2), pages 24-28.
    7. Chen, Wu & Wang, Minxi & Li, Xin, 2016. "Analysis of copper flows in the United States: 1975–2012," Resources, Conservation & Recycling, Elsevier, vol. 111(C), pages 67-76.
    8. Kushnir, Duncan & Sandén, Björn A., 2012. "The time dimension and lithium resource constraints for electric vehicles," Resources Policy, Elsevier, vol. 37(1), pages 93-103.
    9. Yıldız, Taşkın Deniz, 2020. "The impacts of EIA procedure on the mining sector in the permit process of mining operating activities & Turkey analysis," Resources Policy, Elsevier, vol. 67(C).
    10. Marzena Smol & Paulina Marcinek & Joanna Duda & Dominika Szołdrowska, 2020. "Importance of Sustainable Mineral Resource Management in Implementing the Circular Economy (CE) Model and the European Green Deal Strategy," Resources, MDPI, vol. 9(5), pages 1-21, May.
    11. Yıldız, Taşkın Deniz & Kural, Orhan, 2020. "The effects of the mining operation activities permit process on the mining sector in Turkey," Resources Policy, Elsevier, vol. 69(C).
    12. Michael Redlinger & Roderick Eggert & Michael Woodhouse, 2014. "Evaluating the Availability of Gallium, Indium, and Tellurium from Recycled Photovoltaic Modules," Working Papers 2014-09, Colorado School of Mines, Division of Economics and Business.
    13. Koji Tokimatsu & Shinsuke Murakami & Tsuyoshi Adachi & Ryota Ii & Rieko Yasuoka & Masahiro Nishio, 2017. "Long-term demand and supply of non-ferrous mineral resources by a mineral balance model," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 30(3), pages 193-206, October.
    14. Nadine Rötzer & Mario Schmidt, 2018. "Decreasing Metal Ore Grades—Is the Fear of Resource Depletion Justified?," Resources, MDPI, vol. 7(4), pages 1-14, December.
    15. Ewa Lewicka & Katarzyna Guzik & Krzysztof Galos, 2021. "On the Possibilities of Critical Raw Materials Production from the EU’s Primary Sources," Resources, MDPI, vol. 10(5), pages 1-21, May.
    16. Klinglmair, Manfred & Fellner, Johann, 2011. "Historical iron and steel recovery in times of raw material shortage: The case of Austria during World War I," Ecological Economics, Elsevier, vol. 72(C), pages 179-187.
    17. R. H. E. M. Koppelaar & H. Koppelaar, 2016. "The Ore Grade and Depth Influence on Copper Energy Inputs," Biophysical Economics and Resource Quality, Springer, vol. 1(2), pages 1-16, December.
    18. Zbigniew Kasztelewicz & Mateusz Sikora & Maciej Zajączkowski, 2020. "Method of Selecting Opening Cut Location Using Multi-Criteria Analysis of Decision Variant Mapping," Resources, MDPI, vol. 9(9), pages 1-14, September.
    19. Sverdrup, Harald U. & Ragnarsdottir, Kristin Vala & Koca, Deniz, 2015. "Aluminium for the future: Modelling the global production, market supply, demand, price and long term development of the global reserves," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 139-154.
    20. Kleijn, Rene & van der Voet, Ester, 2010. "Resource constraints in a hydrogen economy based on renewable energy sources: An exploration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2784-2795, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:bioerq:v:3:y:2018:i:3:d:10.1007_s41247-018-0040-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.