IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v58y2018icp295-302.html
   My bibliography  Save this article

Co-existence of stochastic and chaotic behaviour in the copper price time series

Author

Listed:
  • Mastroeni, Loretta
  • Vellucci, Pierluigi
  • Naldi, Maurizio

Abstract

The possible scarcity of copper (and the likely resulting pressure on prices) is an issue of concern, especially in the light of its importance for the ever growing networking industry. Also for that reason, copper is the nonferrous metal most traded in the markets. Therefore, assessing the nature of its price fluctuations is an important task. Several papers have been devoted to analysing the characteristics of the time series of copper prices, especially for the purpose of predicting its future behaviour. The field of approaches can be divided roughly equally between those adopting a stochastic model and those opting for a deterministic nonlinear (chaotic) model. Nevertheless, while papers employing the stochastic paradigm have completely ignored the presence of chaotic features, at the same time papers recognizing the chaotic paradigm have neglected the presence of noise.The purpose of this paper is to investigate copper price behaviour in the CMX, considering a very long time series and adopting estimation methods that provide the coexistence of stochastic and chaotic features. We find that: a) the presence of noise is very significant (amounting to more than a quarter of the average signal value), as well as the presence of chaotic features; b) intermittency is present, which may be indicative of a bubble-related value that emerged without any fundamental cause.

Suggested Citation

  • Mastroeni, Loretta & Vellucci, Pierluigi & Naldi, Maurizio, 2018. "Co-existence of stochastic and chaotic behaviour in the copper price time series," Resources Policy, Elsevier, vol. 58(C), pages 295-302.
  • Handle: RePEc:eee:jrpoli:v:58:y:2018:i:c:p:295-302
    DOI: 10.1016/j.resourpol.2018.05.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420718301995
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2018.05.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John T Cuddington & Daniel Jerrett, 2008. "Super Cycles in Real Metals Prices?," IMF Staff Papers, Palgrave Macmillan, vol. 55(4), pages 541-565, December.
    2. Gregory P. Decoster & Walter C. Labys & Douglas W. Mitchell, 1992. "Evidence of chaos in commodity futures prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 12(3), pages 291-305, June.
    3. Tilton, John E. & Lagos, Gustavo, 2007. "Assessing the long-run availability of copper," Resources Policy, Elsevier, vol. 32(1-2), pages 19-23.
    4. Buncic, Daniel & Moretto, Carlo, 2015. "Forecasting copper prices with dynamic averaging and selection models," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 1-38.
    5. Stefan Bornholdt, 2001. "Expectation Bubbles In A Spin Model Of Markets: Intermittency From Frustration Across Scales," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 12(05), pages 667-674.
    6. Livia Giovanni & Maurizio Naldi, 2004. "A non linear wavelet based estimator for long memory processes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 13(1), pages 27-41, April.
    7. Panas, E., 2001. "Long memory and chaotic models of prices on the London Metal Exchange," Resources Policy, Elsevier, vol. 27(4), pages 235-246, December.
    8. Chen, Mei-Hsiu, 2010. "Understanding world metals prices--Returns, volatility and diversification," Resources Policy, Elsevier, vol. 35(3), pages 127-140, September.
    9. Ahmed A. A. Khalifa & Hong Miao & Sanjay Ramchander, 2011. "Return distributions and volatility forecasting in metal futures markets: Evidence from gold, silver, and copper," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(1), pages 55-80, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benedetto, Francesco & Mastroeni, Loretta & Quaresima, Greta & Vellucci, Pierluigi, 2020. "Does OVX affect WTI and Brent oil spot variance? Evidence from an entropy analysis," Energy Economics, Elsevier, vol. 89(C).
    2. Bildirici, Melike E. & Sonustun, Bahri, 2021. "Chaotic behavior in gold, silver, copper and bitcoin prices," Resources Policy, Elsevier, vol. 74(C).
    3. Mastroeni, Loretta & Mazzoccoli, Alessandro & Quaresima, Greta & Vellucci, Pierluigi, 2021. "Decoupling and recoupling in the crude oil price benchmarks: An investigation of similarity patterns," Energy Economics, Elsevier, vol. 94(C).
    4. Fijorek, Kamil & Jurkowska, Aleksandra & Jonek-Kowalska, Izabela, 2021. "Financial contagion between the financial and the mining industries – Empirical evidence based on the symmetric and asymmetric CoVaR approach," Resources Policy, Elsevier, vol. 70(C).
    5. Mastroeni, Loretta & Mazzoccoli, Alessandro & Vellucci, Pierluigi, 2024. "Studying the impact of fluctuations, spikes and rare events in time series through a wavelet entropy predictability measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    6. Loretta Mastroeni & Pierluigi Vellucci, 2022. "Construction of an SDE Model from Intraday Copper Futures Prices," Risks, MDPI, vol. 10(11), pages 1-21, November.
    7. Su, Chi-Wei & Wang, Xiao-Qing & Zhu, Haotian & Tao, Ran & Moldovan, Nicoleta-Claudia & Lobonţ, Oana-Ramona, 2020. "Testing for multiple bubbles in the copper price: Periodically collapsing behavior," Resources Policy, Elsevier, vol. 65(C).
    8. Pierluigi Vellucci, 2021. "A critique of financial neoliberalism: a perspective combining multidisciplinary methods and commodity markets," SN Business & Economics, Springer, vol. 1(3), pages 1-11, March.
    9. Zheng, Shuxian & Tan, Zhanglu & Xing, Wanli & Zhou, Xuanru & Zhao, Pei & Yin, Xiuqi & Hu, Han, 2022. "A comparative exploration of the chaotic characteristics of Chinese and international copper futures prices," Resources Policy, Elsevier, vol. 78(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tapia, Carlos & Coulton, Jeff & Saydam, Serkan, 2020. "Using entropy to assess dynamic behaviour of long-term copper price," Resources Policy, Elsevier, vol. 66(C).
    2. József Popp & Judit Oláh & Mária Farkas Fekete & Zoltán Lakner & Domicián Máté, 2018. "The Relationship Between Prices of Various Metals, Oil and Scarcity," Energies, MDPI, vol. 11(9), pages 1-19, September.
    3. Wang, Chao & Zhang, Xinyi & Wang, Minggang & Lim, Ming K. & Ghadimi, Pezhman, 2019. "Predictive analytics of the copper spot price by utilizing complex network and artificial neural network techniques," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    4. Tapia Cortez, Carlos A. & Hitch, Michael & Sammut, Claude & Coulton, Jeff & Shishko, Robert & Saydam, Serkan, 2018. "Determining the embedding parameters governing long-term dynamics of copper prices," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 186-197.
    5. C. A. Tapia Cortez & J. Coulton & C. Sammut & S. Saydam, 2018. "Determining the chaotic behaviour of copper prices in the long-term using annual price data," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-13, December.
    6. Wen, Fenghua & Zhao, Cong & Hu, Chunyan, 2019. "Time-varying effects of international copper price shocks on China's producer price index," Resources Policy, Elsevier, vol. 62(C), pages 507-514.
    7. Guo, Jin, 2018. "Co-movement of international copper prices, China's economic activity, and stock returns: Structural breaks and volatility dynamics," Global Finance Journal, Elsevier, vol. 36(C), pages 62-77.
    8. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2021. "Economic drivers of commodity volatility: The case of copper," Resources Policy, Elsevier, vol. 73(C).
    9. Etoundi Atenga, Eric Martial, 2014. "Asymmetric shocks, persistence in volatility and spillover effects between non ferrous metals on the LME spot market," MPRA Paper 61017, University Library of Munich, Germany.
    10. Antonakakis, Nikolaos & Kizys, Renatas, 2015. "Dynamic spillovers between commodity and currency markets," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 303-319.
    11. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2020. "A random walk through the trees: Forecasting copper prices using decision learning methods," Resources Policy, Elsevier, vol. 69(C).
    12. Addison, Tony & Ghoshray, Atanu, 2023. "Discerning trends in international metal prices in the presence of nonstationary volatility," Resource and Energy Economics, Elsevier, vol. 71(C).
    13. Yves Jégourel, 2018. "Tendances et cyclicité du prix des matières premières (partie 2) : le super-cycle des matières premières en question," Policy briefs 1824, Policy Center for the New South.
    14. He, Kaijian & Liu, Youjin & Yu, Lean & Lai, Kin Keung, 2016. "Multiscale dependence analysis and portfolio risk modeling for precious metal markets," Resources Policy, Elsevier, vol. 50(C), pages 224-233.
    15. He, Kaijian & Lu, Xingjing & Zou, Yingchao & Keung Lai, Kin, 2015. "Forecasting metal prices with a curvelet based multiscale methodology," Resources Policy, Elsevier, vol. 45(C), pages 144-150.
    16. Su, Chi-Wei & Wang, Xiao-Qing & Zhu, Haotian & Tao, Ran & Moldovan, Nicoleta-Claudia & Lobonţ, Oana-Ramona, 2020. "Testing for multiple bubbles in the copper price: Periodically collapsing behavior," Resources Policy, Elsevier, vol. 65(C).
    17. Yonggu Kim & Keeyoung Shin & Joseph Ahn & Eul-Bum Lee, 2017. "Probabilistic Cash Flow-Based Optimal Investment Timing Using Two-Color Rainbow Options Valuation for Economic Sustainability Appraisement," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
    18. Bildirici, Melike E. & Sonustun, Bahri, 2021. "Chaotic behavior in gold, silver, copper and bitcoin prices," Resources Policy, Elsevier, vol. 74(C).
    19. Guo, Tianjiao & Geng, Yong & Song, Xiaoqian & Rui, Xue & Ge, Zewen, 2023. "Tracing magnesium flows in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 83(C).
    20. Larona S. Teseletso & Tsuyoshi Adachi, 2022. "Long-Term Sustainability of Copper and Iron Based on a System Dynamics Model," Resources, MDPI, vol. 11(4), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:58:y:2018:i:c:p:295-302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.