Explanatory Interactive Machine Learning
Author
Abstract
Suggested Citation
DOI: 10.1007/s12599-023-00806-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Matthew T. Mullarkey & Alan R. Hevner & Pär Ågerfalk, 2019. "An elaborated action design research process model," European Journal of Information Systems, Taylor & Francis Journals, vol. 28(1), pages 6-20, January.
- Christof Weinhardt & Simon Kloker & Oliver Hinz & Wil M. P. Aalst, 2020. "Citizen Science in Information Systems Research," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 62(4), pages 273-277, August.
- Arun Rai, 2020. "Explainable AI: from black box to glass box," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 137-141, January.
- Elizabeth Gibney, 2020. "Whose coronavirus strategy worked best? Scientists hunt most effective policies," Nature, Nature, vol. 581(7806), pages 15-16, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Changdong, 2024. "How consumers respond to service failures caused by algorithmic mistakes: The role of algorithmic interpretability," Journal of Business Research, Elsevier, vol. 176(C).
- Robertson, Jeandri & Ferreira, Caitlin & Botha, Elsamari & Oosthuizen, Kim, 2024. "Game changers: A generative AI prompt protocol to enhance human-AI knowledge co-construction," Business Horizons, Elsevier, vol. 67(5), pages 499-510.
- Leah Warfield Smith & Randall Lee Rose & Alex R. Zablah & Heath McCullough & Mohammad “Mike” Saljoughian, 2023. "Examining post-purchase consumer responses to product automation," Journal of the Academy of Marketing Science, Springer, vol. 51(3), pages 530-550, May.
- Enzo Cumbo & Giuseppe Gallina & Pietro Messina & Giuseppe Alessandro Scardina, 2023. "Filter Masks during the Second Phase of SARS-CoV-2: Study on Population," IJERPH, MDPI, vol. 20(3), pages 1-7, January.
- Ekaterina Jussupow & Kai Spohrer & Armin Heinzl & Joshua Gawlitza, 2021. "Augmenting Medical Diagnosis Decisions? An Investigation into Physicians’ Decision-Making Process with Artificial Intelligence," Information Systems Research, INFORMS, vol. 32(3), pages 713-735, September.
- Maria Petrescu & Anjala S. Krishen, 2020. "The importance of high-quality data and analytics during the pandemic," Journal of Marketing Analytics, Palgrave Macmillan, vol. 8(2), pages 43-44, June.
- Trocin, Cristina & Hovland, Ingrid Våge & Mikalef, Patrick & Dremel, Christian, 2021. "How Artificial Intelligence affords digital innovation: A cross-case analysis of Scandinavian companies," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
- Mari, Alex & Mandelli, Andreina & Algesheimer, René, 2024. "Empathic voice assistants: Enhancing consumer responses in voice commerce," Journal of Business Research, Elsevier, vol. 175(C).
- Ostry, Jonathan D. & Deb, Pragyan & Furceri, Davide & Tawk, Nour, 2020.
"The Effect of Containment Measures on the COVID-19 Pandemic,"
CEPR Discussion Papers
15086, C.E.P.R. Discussion Papers.
- Mr. Pragyan Deb & Davide Furceri & Mr. Jonathan David Ostry & Nour Tawk, 2020. "The Effect of Containment Measures on the COVID-19 Pandemic," IMF Working Papers 2020/159, International Monetary Fund.
- Vinay Singh & Brijesh Nanavati & Arpan Kumar Kar & Agam Gupta, 2023. "How to Maximize Clicks for Display Advertisement in Digital Marketing? A Reinforcement Learning Approach," Information Systems Frontiers, Springer, vol. 25(4), pages 1621-1638, August.
- Mitra, Debrudra & Chu, Yiyi & Cetin, Kristen, 2022. "COVID-19 impacts on residential occupancy schedules and activities in U.S. Homes in 2020 using ATUS," Applied Energy, Elsevier, vol. 324(C).
- Alex Mari & Andreina Mandelli & René Algesheimer, 2023. "Shopping with Voice Assistants: How Empathy Affects Individual and Family Decision-Making Outcomes," Working Papers 399, University of Zurich, Department of Business Administration (IBW).
- Valeria D’Amato & Rita D’Ecclesia & Susanna Levantesi, 2022. "ESG score prediction through random forest algorithm," Computational Management Science, Springer, vol. 19(2), pages 347-373, June.
- Patrick Rehill & Nicholas Biddle, 2023. "Transparency challenges in policy evaluation with causal machine learning -- improving usability and accountability," Papers 2310.13240, arXiv.org, revised Mar 2024.
- Marina Johnson & Abdullah Albizri & Antoine Harfouche, 2023. "Responsible Artificial Intelligence in Healthcare: Predicting and Preventing Insurance Claim Denials for Economic and Social Wellbeing," Information Systems Frontiers, Springer, vol. 25(6), pages 2179-2195, December.
- Andy Hong & Sandip Chakrabarti, 2023. "Compact living or policy inaction? Effects of urban density and lockdown on the COVID-19 outbreak in the US," Urban Studies, Urban Studies Journal Limited, vol. 60(9), pages 1588-1609, July.
- Piotr Tomasz Makowski & Yuya Kajikawa, 2021. "Automation-driven innovation management? Toward Innovation-Automation-Strategy cycle," Papers 2103.02395, arXiv.org.
- Fabian Sven Karst & Mahei Manhai Li & Jan Marco Leimeister, 2025. "SynDEc: A Synthetic Data Ecosystem," Electronic Markets, Springer;IIM University of St. Gallen, vol. 35(1), pages 1-28, December.
- Cindy Cheng & Joan Barcelo & Allison Spencer Hartnett & Robert Kubinec & Luca Messerschmidt, 2020.
"CoronaNet: A Dyadic Dataset of Government Responses to the COVID-19 Pandemic,"
Working Papers
20200042, New York University Abu Dhabi, Department of Social Science, revised Apr 2020.
- Cheng, Cindy & Barceló, Joan & Hartnett, Allison & Kubinec, Robert & Messerschmidt, Luca, 2020. "CoronaNet: A Dyadic Dataset of Government Responses to the COVID-19 Pandemic," SocArXiv dkvxy, Center for Open Science.
- Janasz, Tomasz & Mortensen, Peter & Reisswig, Christian & Weller, Tobias & Herrmann, Maximilian & Crnoja, Ivona & Höhne, Johannes, 2021. "Advancements in ML-Enabled Intelligent Document Processing and How to Overcome Adoption Challenges in Enterprises," Die Unternehmung - Swiss Journal of Business Research and Practice, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 75(3), pages 340-358.
More about this item
Keywords
Action design research; Data science; Explainable artificial intelligence; Interactive machine learning; Pneumonia; Corona virus;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:binfse:v:65:y:2023:i:6:d:10.1007_s12599-023-00806-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.