Benchmarking Energy Quantification Methods to Predict Heating Energy Performance of Residential Buildings in Germany
Author
Abstract
Suggested Citation
DOI: 10.1007/s12599-021-00691-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
- Ali, Usman & Shamsi, Mohammad Haris & Bohacek, Mark & Hoare, Cathal & Purcell, Karl & Mangina, Eleni & O’Donnell, James, 2020. "A data-driven approach to optimize urban scale energy retrofit decisions for residential buildings," Applied Energy, Elsevier, vol. 267(C).
- Ruojing Zhang & Marta Indulska & Shazia Sadiq, 2019. "Discovering Data Quality Problems," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(5), pages 575-593, October.
- Pan, Yue & Zhang, Limao, 2020. "Data-driven estimation of building energy consumption with multi-source heterogeneous data," Applied Energy, Elsevier, vol. 268(C).
- Can Kaymakci & Simon Wenninger & Alexander Sauer, 2021. "A Holistic Framework for AI Systems in Industrial Applications," Lecture Notes in Information Systems and Organization, in: Frederik Ahlemann & Reinhard Schütte & Stefan Stieglitz (ed.), Innovation Through Information Systems, pages 78-93, Springer.
- Li, Y. & Kubicki, S. & Guerriero, A. & Rezgui, Y., 2019. "Review of building energy performance certification schemes towards future improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- Burman, Esfand & Mumovic, Dejan & Kimpian, Judit, 2014. "Towards measurement and verification of energy performance under the framework of the European directive for energy performance of buildings," Energy, Elsevier, vol. 77(C), pages 153-163.
- Hardy, A. & Glew, D., 2019. "An analysis of errors in the Energy Performance certificate database," Energy Policy, Elsevier, vol. 129(C), pages 1168-1178.
- Buratti, C. & Barbanera, M. & Palladino, D., 2014. "An original tool for checking energy performance and certification of buildings by means of Artificial Neural Networks," Applied Energy, Elsevier, vol. 120(C), pages 125-132.
- Thrampoulidis, Emmanouil & Mavromatidis, Georgios & Lucchi, Aurelien & Orehounig, Kristina, 2021. "A machine learning-based surrogate model to approximate optimal building retrofit solutions," Applied Energy, Elsevier, vol. 281(C).
- Kraus, Daniel & Czado, Claudia, 2017. "D-vine copula based quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 1-18.
- Achtnicht, Martin & Madlener, Reinhard, 2014.
"Factors influencing German house owners' preferences on energy retrofits,"
Energy Policy, Elsevier, vol. 68(C), pages 254-263.
- Achtnicht, Martin & Madlener, Reinhard, 2012. "Factors influencing German house owners' preferences on energy retrofits," ZEW Discussion Papers 12-042, ZEW - Leibniz Centre for European Economic Research.
- Achtnicht, Martin & Madlener, Reinhard, 2012. "Factors Influencing German House Owners' Preferences on Energy Retrofits," FCN Working Papers 4/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
- Cozza, Stefano & Chambers, Jonathan & Patel, Martin K., 2020. "Measuring the thermal energy performance gap of labelled residential buildings in Switzerland," Energy Policy, Elsevier, vol. 137(C).
- Amir Mosavi & Mohsen Salimi & Sina Faizollahzadeh Ardabili & Timon Rabczuk & Shahaboddin Shamshirband & Annamaria R. Varkonyi-Koczy, 2019. "State of the Art of Machine Learning Models in Energy Systems, a Systematic Review," Energies, MDPI, vol. 12(7), pages 1-42, April.
- Menezes, Anna Carolina & Cripps, Andrew & Bouchlaghem, Dino & Buswell, Richard, 2012. "Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap," Applied Energy, Elsevier, vol. 97(C), pages 355-364.
- Ciulla, G. & D'Amico, A., 2019. "Building energy performance forecasting: A multiple linear regression approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Seyedzadeh, Saleh & Pour Rahimian, Farzad & Oliver, Stephen & Rodriguez, Sergio & Glesk, Ivan, 2020. "Machine learning modelling for predicting non-domestic buildings energy performance: A model to support deep energy retrofit decision-making," Applied Energy, Elsevier, vol. 279(C).
- Pasichnyi, Oleksii & Wallin, Jörgen & Levihn, Fabian & Shahrokni, Hossein & Kordas, Olga, 2019. "Energy performance certificates — New opportunities for data-enabled urban energy policy instruments?," Energy Policy, Elsevier, vol. 127(C), pages 486-499.
- Nagler, Thomas, 2018. "A generic approach to nonparametric function estimation with mixed data," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 326-330.
- Aydinalp, Merih & Ismet Ugursal, V. & Fung, Alan S., 2004. "Modeling of the space and domestic hot-water heating energy-consumption in the residential sector using neural networks," Applied Energy, Elsevier, vol. 79(2), pages 159-178, October.
- von Platten, Jenny & Holmberg, Carolina & Mangold, Mikael & Johansson, Tim & Mjörnell, Kristina, 2019. "The renewing of Energy Performance Certificates—Reaching comparability between decade-apart energy records," Applied Energy, Elsevier, vol. 255(C).
- Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
- Amecke, Hermann, 2012. "The impact of energy performance certificates: A survey of German home owners," Energy Policy, Elsevier, vol. 46(C), pages 4-14.
- Ahlrichs, Jakob & Rockstuhl, Sebastian & Tränkler, Timm & Wenninger, Simon, 2020. "The impact of political instruments on building energy retrofits: A risk-integrated thermal Energy Hub approach," Energy Policy, Elsevier, vol. 147(C).
- Olonscheck, Mady & Holsten, Anne & Kropp, Jürgen P., 2011. "Heating and cooling energy demand and related emissions of the German residential building stock under climate change," Energy Policy, Elsevier, vol. 39(9), pages 4795-4806, September.
- Jenny Crawley & Phillip Biddulph & Paul J. Northrop & Jez Wingfield & Tadj Oreszczyn & Cliff Elwell, 2019. "Quantifying the Measurement Error on England and Wales EPC Ratings," Energies, MDPI, vol. 12(18), pages 1-19, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rockstuhl, Sebastian & Wenninger, Simon & Wiethe, Christian & Ahlrichs, Jakob, 2022. "The influence of risk perception on energy efficiency investments: Evidence from a German survey," Energy Policy, Elsevier, vol. 167(C).
- Simon Wenninger & Christian Wiethe, 2022. "The Human’s Comfort Mystery—Supporting Energy Transition with Light-Color Dimmable Room Lighting," Sustainability, MDPI, vol. 14(4), pages 1-10, February.
- Ahlrichs, Jakob & Wenninger, Simon & Wiethe, Christian & Häckel, Björn, 2022. "Impact of socio-economic factors on local energetic retrofitting needs - A data analytics approach," Energy Policy, Elsevier, vol. 160(C).
- Wenninger, Simon & Kaymakci, Can & Wiethe, Christian, 2022. "Explainable long-term building energy consumption prediction using QLattice," Applied Energy, Elsevier, vol. 308(C).
- Karol Bot & Samira Santos & Inoussa Laouali & Antonio Ruano & Maria da Graça Ruano, 2021. "Design of Ensemble Forecasting Models for Home Energy Management Systems," Energies, MDPI, vol. 14(22), pages 1-37, November.
- Wiethe, Christian & Wenninger, Simon, 2023. "The influence of building energy performance prediction accuracy on retrofit rates," Energy Policy, Elsevier, vol. 177(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wenninger, Simon & Kaymakci, Can & Wiethe, Christian, 2022. "Explainable long-term building energy consumption prediction using QLattice," Applied Energy, Elsevier, vol. 308(C).
- Wiethe, Christian & Wenninger, Simon, 2023. "The influence of building energy performance prediction accuracy on retrofit rates," Energy Policy, Elsevier, vol. 177(C).
- Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
- Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Mahmoud Abdelkader Bashery Abbass & Mohamed Hamdy, 2021. "A Generic Pipeline for Machine Learning Users in Energy and Buildings Domain," Energies, MDPI, vol. 14(17), pages 1-30, August.
- Ahlrichs, Jakob & Rockstuhl, Sebastian & Tränkler, Timm & Wenninger, Simon, 2020. "The impact of political instruments on building energy retrofits: A risk-integrated thermal Energy Hub approach," Energy Policy, Elsevier, vol. 147(C).
- Zini, Marco & Carcasci, Carlo, 2023. "Machine learning-based monitoring method for the electricity consumption of a healthcare facility in Italy," Energy, Elsevier, vol. 262(PB).
- Wang, Lan & Lee, Eric W.M. & Hussian, Syed Asad & Yuen, Anthony Chun Yin & Feng, Wei, 2021. "Quantitative impact analysis of driving factors on annual residential building energy end-use combining machine learning and stochastic methods," Applied Energy, Elsevier, vol. 299(C).
- Pagliaro, Francesca & Hugony, Francesca & Zanghirella, Fabio & Basili, Rossano & Misceo, Monica & Colasuonno, Luca & Del Fatto, Vincenzo, 2021. "Assessing building energy performance and energy policy impact through the combined analysis of EPC data – The Italian case study of SIAPE," Energy Policy, Elsevier, vol. 159(C).
- Zhang, Yan & Teoh, Bak Koon & Wu, Maozhi & Chen, Jiayu & Zhang, Limao, 2023. "Data-driven estimation of building energy consumption and GHG emissions using explainable artificial intelligence," Energy, Elsevier, vol. 262(PA).
- Kapp, Sean & Choi, Jun-Ki & Hong, Taehoon, 2023. "Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
- Wate, P. & Iglesias, M. & Coors, V. & Robinson, D., 2020. "Framework for emulation and uncertainty quantification of a stochastic building performance simulator," Applied Energy, Elsevier, vol. 258(C).
- Sun, Jian & Liu, Gang & Sun, Boyang & Xiao, Gang, 2021. "Light-stacking strengthened fusion based building energy consumption prediction framework via variable weight feature selection," Applied Energy, Elsevier, vol. 303(C).
- Zhang, Xiang & Rasmussen, Christoffer & Saelens, Dirk & Roels, Staf, 2022. "Time-dependent solar aperture estimation of a building: Comparing grey-box and white-box approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
- Gao, Lei & Liu, Tianyuan & Cao, Tao & Hwang, Yunho & Radermacher, Reinhard, 2021. "Comparing deep learning models for multi energy vectors prediction on multiple types of building," Applied Energy, Elsevier, vol. 301(C).
- Shiva Amirkhani & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook & Hooman Tahayori & Hexin Zhang, 2021. "Uncertainties in Non-Domestic Energy Performance Certificate Generating in the UK," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
- Pedone, Livio & Molaioni, Filippo & Vallati, Andrea & Pampanin, Stefano, 2023. "Energy refurbishment planning of Italian school buildings using data-driven predictive models," Applied Energy, Elsevier, vol. 350(C).
- Edmundas Monstvilas & Simon Paul Borg & Rosita Norvaišienė & Karolis Banionis & Juozas Ramanauskas, 2023. "Impact of the EPBD on Changes in the Energy Performance of Multi-Apartment Buildings in Lithuania," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
- Domenico Palladino & Silvia Di Turi, 2023. "Energy and Economic Savings Assessment of Energy Refurbishment Actions in Italian Residential Buildings: Comparison between Asset and Tailored Calculation," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
More about this item
Keywords
Energy informatics; Energy quantification methods; Energy performance certificates; Benchmarking; Data-driven methods; Machine learning algorithms; Building energy; Data analytics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:binfse:v:63:y:2021:i:3:d:10.1007_s12599-021-00691-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.