IDEAS home Printed from https://ideas.repec.org/h/spr/lnichp/978-3-030-86797-3_6.html
   My bibliography  Save this book chapter

A Holistic Framework for AI Systems in Industrial Applications

In: Innovation Through Information Systems

Author

Listed:
  • Can Kaymakci

    (Fraunhofer Institute for Manufacturing Engineering and Automation IPA
    University of Stuttgart)

  • Simon Wenninger

    (University of Applied Sciences Augsburg
    Project Group Business and Information Systems Engineering of the Fraunhofer FIT)

  • Alexander Sauer

    (Fraunhofer Institute for Manufacturing Engineering and Automation IPA
    University of Stuttgart)

Abstract

Although several promising use cases for artificial intelligence (AI) for manufacturing companies have been identified, these are not yet widely used. Existing literature covers a variety of frameworks, methods and processes related to AI systems. However, the application of AI systems in manufacturing companies lacks a uniform understanding of components and functionalities as well as a structured process that supports developers and project managers in planning, implementing, and optimizing AI systems. To close this gap, we develop a generic conceptual model of an AI system for the application in manufacturing systems and a four-phase model to guide developers and project managers through the realization of AI systems.

Suggested Citation

  • Can Kaymakci & Simon Wenninger & Alexander Sauer, 2021. "A Holistic Framework for AI Systems in Industrial Applications," Lecture Notes in Information Systems and Organization, in: Frederik Ahlemann & Reinhard Schütte & Stefan Stieglitz (ed.), Innovation Through Information Systems, pages 78-93, Springer.
  • Handle: RePEc:spr:lnichp:978-3-030-86797-3_6
    DOI: 10.1007/978-3-030-86797-3_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Wenninger & Christian Wiethe, 2021. "Benchmarking Energy Quantification Methods to Predict Heating Energy Performance of Residential Buildings in Germany," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(3), pages 223-242, June.
    2. Wenninger, Simon & Kaymakci, Can & Wiethe, Christian, 2022. "Explainable long-term building energy consumption prediction using QLattice," Applied Energy, Elsevier, vol. 308(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnichp:978-3-030-86797-3_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.