IDEAS home Printed from https://ideas.repec.org/a/spr/astaws/v6y2013i3p149-191.html
   My bibliography  Save this article

Small Area-Statistik: Methoden und Anwendungen

Author

Listed:
  • Ralf Münnich
  • Jan Burgard
  • Martin Vogt

Abstract

Modern household surveys increasingly provide information on subgroups as defined by content or regions. This kind of information, in general, is gained from censuses every ten years. Within the current European census round, some countries have decided to implement new methods which do not rely on a complete enumeration of the population. Switzerland and Germany, for example, are applying a register-assisted census. An exploitation of the register of residents is enriched with information gained from an additional sample. This sample also furnishes possible statistical corrections of the register. This change of paradigm in official statistics urges for adequate statistical methods. In a register-assisted census, additionally to efficient estimates at national level, reliable regional estimates are required. However, the disaggregation may result in very low sample sizes for some of the areas of interest. Whilst classical design-based methods will not produce reliable estimates for these areas, modern model-based small area methods may improve the quality of the estimates by far. The present work focuses on illustrating the small area estimation concepts and methods by two examples of recent research on register-assisted censuses. Additionally to two basic small area models, various recent extensions will be discussed. The successful application of these methods is of crucial importance for obtaining reliable regionalized statistics. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Ralf Münnich & Jan Burgard & Martin Vogt, 2013. "Small Area-Statistik: Methoden und Anwendungen," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 6(3), pages 149-191, March.
  • Handle: RePEc:spr:astaws:v:6:y:2013:i:3:p:149-191
    DOI: 10.1007/s11943-013-0126-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11943-013-0126-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11943-013-0126-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Salvati & N. Tzavidis & M. Pratesi & R. Chambers, 2012. "Small area estimation via M-quantile geographically weighted regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 1-28, March.
    2. Gauri Sankar Datta & J. N. K. Rao & David Daniel Smith, 2005. "On measuring the variability of small area estimators under a basic area level model," Biometrika, Biometrika Trust, vol. 92(1), pages 183-196, March.
    3. Gonzalez-Manteiga, W. & Lombardia, M.J. & Molina, I. & Morales, D. & Santamaria, L., 2007. "Estimation of the mean squared error of predictors of small area linear parameters under a logistic mixed model," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2720-2733, February.
    4. Martin Vogt & Ralf Munnich, 2009. "On the existence of a posterior distribution for spatial mixed models with binomial responses," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 201-209.
    5. Siegfried Gabler & Matthias Ganninger & Ralf Münnich, 2012. "Optimal allocation of the sample size to strata under box constraints," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(2), pages 151-161, February.
    6. Pfeffermann, Danny & Sverchkov, Michail, 2007. "Small-Area Estimation Under Informative Probability Sampling of Areas and Within the Selected Areas," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1427-1439, December.
    7. Chris Elbers & Jean O. Lanjouw & Peter Lanjouw, 2003. "Micro--Level Estimation of Poverty and Inequality," Econometrica, Econometric Society, vol. 71(1), pages 355-364, January.
    8. Ray Chambers & Nikos Tzavidis, 2006. "M-quantile models for small area estimation," Biometrika, Biometrika Trust, vol. 93(2), pages 255-268, June.
    9. Jiming Jiang & P. Lahiri, 2006. "Mixed model prediction and small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-96, June.
    10. Peter Hall & Tapabrata Maiti, 2006. "On parametric bootstrap methods for small area prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 221-238, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ralf Thomas Münnich, 2016. "Vorwort des Herausgebers," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 10(4), pages 197-203, December.
    2. Jan Pablo Burgard & Ralf Münnich & Martin Rupp, 2019. "A Generalized Calibration Approach Ensuring Coherent Estimates with Small Area Constraints," Research Papers in Economics 2019-10, University of Trier, Department of Economics.
    3. Ralf Münnich & Jan Pablo Burgard, 2015. "SAE teaching using simulations," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 603-610, December.
    4. Ulrich Rendtel, 2014. "Vom potenziellen Datenangreifer zum zertifizierten Wissenschaftler – Für eine Neugestaltung des Wissenschaftsprivilegs beim Datenzugang," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 8(4), pages 183-197, November.
    5. Friedrich, Ulf & Münnich, Ralf & de Vries, Sven & Wagner, Matthias, 2015. "Fast integer-valued algorithms for optimal allocations under constraints in stratified sampling," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 1-12.
    6. Jan Pablo Burgard & Ralf Münnich, 2015. "Sae Teaching Using Simulations," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 603-610, December.
    7. Jan Breitkreuz & Gabriela Brückner & Jan Pablo Burgard & Joscha Krause & Ralf Münnich & Helmut Schröder & Katrin Schüssel, 2019. "Schätzung kleinräumiger Krankheitshäufigkeiten für die deutsche Bevölkerung anhand von Routinedaten am Beispiel von Typ-2-Diabetes [Estimation of regional diabetes type 2 prevalence in the German p," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 13(1), pages 35-72, April.
    8. Ralf Münnich, 2013. "Vorwort des Herausgebers," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 7(3), pages 101-103, December.
    9. Sebastian Dräger & Johannes Kopp & Ralf Münnich & Simon Schmaus, 2022. "Die zukünftige Entwicklung der Grundschulversorgung im Kontext ausgewählter Wanderungsszenarien [The future development of primary school demand in the context of selected migration scenarios]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 16(1), pages 51-77, March.
    10. Ann-Kristin Kreutzmann, 2018. "Estimation of sample quantiles: challenges and issues in the context of income and wealth distributions [Die Schätzung von Quantilen: Herausforderungen und Probleme im Kontext von Einkommens- und V," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 12(3), pages 245-270, December.
    11. Saeideh Kamgar & Florian Meinfelder & Ralf Münnich & Hamidreza Navvabpour, 2020. "Estimation within the new integrated system of household surveys in Germany," Statistical Papers, Springer, vol. 61(5), pages 2091-2117, October.
    12. Burgard Jan Pablo & Münnich Ralf, 2015. "Sae Teaching Using Simulations," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 603-610, December.
    13. Ralf Münnich, 2013. "Vorwort des Herausgebers," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 6(3), pages 83-85, March.
    14. Thomas Zimmermann, 2019. "Einsatzmöglichkeiten von Small Area-Verfahren bei Kohortenschätzungen im Zensus 2021 [Applicablity of small area estimation methods for demographic cohorts in the Census 2021]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 13(2), pages 157-177, September.
    15. Charlotte Articus & Jan Pablo Burgard, 2014. "A Finite Mixture Fay Herriot-type model for estimating regional rental prices in Germany," Research Papers in Economics 2014-14, University of Trier, Department of Economics.
    16. Ulrich Rendtel & Stefan Liebig & Reinhard Meister & Gert G. Wagner & Sabine Zinn, 2021. "Die Erforschung der Dynamik der Corona-Pandemie in Deutschland: Survey-Konzepte und eine exemplarische Umsetzung mit dem Sozio-oekonomischen Panel (SOEP) [The research on the dynamics of the Corona," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 15(3), pages 155-196, December.
    17. Ralf Münnich & Julian Wagner & Joachim Hill & Johannes Stoffels & Henning Buddenbaum & Thomas Udelhoven, 2016. "Schätzung von Holzvorräten unter Verwendung von Fernerkundungsdaten [Estimation of timber reserves using remote sensing data]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 10(2), pages 95-112, October.
    18. Ralf Münnich & Siegfried Gabler & Christian Bruch & Jan Pablo Burgard & Tobias Enderle & Jan-Philipp Kolb & Thomas Zimmermann, 2015. "Tabellenauswertungen im Zensus unter Berücksichtigung fehlender Werte," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 9(3), pages 269-304, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timo Schmid & Ralf Münnich, 2014. "Spatial robust small area estimation," Statistical Papers, Springer, vol. 55(3), pages 653-670, August.
    2. Torabi, Mahmoud & Rao, J.N.K., 2014. "On small area estimation under a sub-area level model," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 36-55.
    3. Isabel Molina & Paul Corral & Minh Nguyen, 2022. "Estimation of poverty and inequality in small areas: review and discussion," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1143-1166, December.
    4. G. Bertarelli & R. Chambers & N. Salvati, 2021. "Outlier robust small domain estimation via bias correction and robust bootstrapping," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 331-357, March.
    5. Sanjoy K. Sinha, 2019. "Robust small area estimation in generalized linear mixed models," METRON, Springer;Sapienza Università di Roma, vol. 77(3), pages 201-225, December.
    6. Timo Schmid & Nikos Tzavidis & Ralf Münnich & Ray Chambers, 2016. "Outlier Robust Small-Area Estimation Under Spatial Correlation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 806-826, September.
    7. J. N. K. Rao, 2015. "Inferential Issues In Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.
    8. Malay Ghosh, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    9. Caterina Giusti & Lucio Masserini & Monica Pratesi, 2017. "Local Comparisons of Small Area Estimates of Poverty: An Application Within the Tuscany Region in Italy," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 131(1), pages 235-254, March.
    10. Schmid, Timo & Tzavidis, Nikos & Münnich, Ralf & Chambers, Ray, 2015. "Outlier robust small area estimation under spatial correlation," Discussion Papers 2015/8, Free University Berlin, School of Business & Economics.
    11. Marchetti, Stefano & Tzavidis, Nikos & Pratesi, Monica, 2012. "Non-parametric bootstrap mean squared error estimation for M-quantile estimators of small area averages, quantiles and poverty indicators," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2889-2902.
    12. Burgard, Jan Pablo & Münnich, Ralf T., 2012. "Modelling over and undercounts for design-based Monte Carlo studies in small area estimation: An application to the German register-assisted census," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2856-2863.
    13. Isabel Molina & Ayoub Saei & M. José Lombardía, 2007. "Small area estimates of labour force participation under a multinomial logit mixed model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 975-1000, October.
    14. Niall Farrell, 2024. "Small Area Poverty Estimation by Conditional Monte Carlo," Papers WP773, Economic and Social Research Institute (ESRI).
    15. J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
    16. Enrico Fabrizi & Caterina Giusti & Nicola Salvati & Nikos Tzavidis, 2014. "Mapping average equivalized income using robust small area methods," Papers in Regional Science, Wiley Blackwell, vol. 93(3), pages 685-701, August.
    17. Baldermann, Claudia & Salvati, Nicola & Schmid, Timo, 2016. "Robust small area estimation under spatial non-stationarity," Discussion Papers 2016/5, Free University Berlin, School of Business & Economics.
    18. Stefano Marchetti & Caterina Giusti & Nicola Salvati & Monica Pratesi, 2017. "Small area estimation based on M-quantile models in presence of outliers in auxiliary variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 531-555, November.
    19. Rao J. N. K., 2015. "Inferential Issues in Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.
    20. Paolo Frumento & Nicola Salvati, 2020. "Parametric modelling of M‐quantile regression coefficient functions with application to small area estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 229-250, January.

    More about this item

    Keywords

    Regionalstatistik; Synthetische Schätzung; Designbasierte Schätzung; Zusammengesetzte Schätzung; C83; C31; C13; C15; Regional statistics; Synthetic estimation; Design-based estimation; Composite estimation;
    All these keywords.

    JEL classification:

    • C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:astaws:v:6:y:2013:i:3:p:149-191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.