IDEAS home Printed from https://ideas.repec.org/a/vrs/stintr/v16y2015i4p603-610n3.html
   My bibliography  Save this article

Sae Teaching Using Simulations

Author

Listed:
  • Burgard Jan Pablo

    (Trier University, Trier, Germany)

  • Münnich Ralf

    (Trier University, Trier, Germany)

Abstract

The increasing interest in applying small area estimation methods urges the needs for training in small area estimation. To better understand the behaviour of small area estimators in practice, simulations are a feasible way for evaluating and teaching properties of the estimators of interest. By designing such simulation studies, students gain a deeper understanding of small area estimation methods. Thus, we encourage to use appropriate simulations as an additional interactive tool in teaching small area estimation methods.

Suggested Citation

  • Burgard Jan Pablo & Münnich Ralf, 2015. "Sae Teaching Using Simulations," Statistics in Transition New Series, Statistics Poland, vol. 16(4), pages 603-610, December.
  • Handle: RePEc:vrs:stintr:v:16:y:2015:i:4:p:603-610:n:3
    DOI: 10.21307/stattrans-2015-035
    as

    Download full text from publisher

    File URL: https://doi.org/10.21307/stattrans-2015-035
    Download Restriction: no

    File URL: https://libkey.io/10.21307/stattrans-2015-035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ralf Münnich & Jan Burgard & Martin Vogt, 2013. "Small Area-Statistik: Methoden und Anwendungen," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 6(3), pages 149-191, March.
    2. Wei Shen & Thomas A. Louis, 1998. "Triple‐goal estimates in two‐stage hierarchical models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 455-471.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Pablo Burgard & Ralf Münnich, 2015. "Sae Teaching Using Simulations," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 603-610, December.
    2. Sebastian Dräger & Johannes Kopp & Ralf Münnich & Simon Schmaus, 2022. "Die zukünftige Entwicklung der Grundschulversorgung im Kontext ausgewählter Wanderungsszenarien [The future development of primary school demand in the context of selected migration scenarios]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 16(1), pages 51-77, March.
    3. Ralf Münnich & Siegfried Gabler & Christian Bruch & Jan Pablo Burgard & Tobias Enderle & Jan-Philipp Kolb & Thomas Zimmermann, 2015. "Tabellenauswertungen im Zensus unter Berücksichtigung fehlender Werte," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 9(3), pages 269-304, December.
    4. J. R. Lockwood & Katherine E. Castellano & Benjamin R. Shear, 2018. "Flexible Bayesian Models for Inferences From Coarsened, Group-Level Achievement Data," Journal of Educational and Behavioral Statistics, , vol. 43(6), pages 663-692, December.
    5. Ralf Thomas Münnich, 2016. "Vorwort des Herausgebers," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 10(4), pages 197-203, December.
    6. Jan Pablo Burgard & Ralf Münnich & Martin Rupp, 2019. "A Generalized Calibration Approach Ensuring Coherent Estimates with Small Area Constraints," Research Papers in Economics 2019-10, University of Trier, Department of Economics.
    7. Ralf Münnich & Jan Pablo Burgard, 2015. "SAE teaching using simulations," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 603-610, December.
    8. Saeideh Kamgar & Florian Meinfelder & Ralf Münnich & Hamidreza Navvabpour, 2020. "Estimation within the new integrated system of household surveys in Germany," Statistical Papers, Springer, vol. 61(5), pages 2091-2117, October.
    9. Partha Lahiri & Jiraphan Suntornchost, 2020. "A general Bayesian approach to meet different inferential goals in poverty research for small areas," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 237-253, August.
    10. Rendtel, Ulrich & Liebig, Stefan & Meister, Reinhard & Wagner, Gert G. & Zinn, Sabine, 2021. "Die Erforschung der Dynamik der Corona-Pandemie in Deutschland: Survey-Konzepte und eine exemplarische Umsetzung mit dem Sozio-oekonomischen Panel (SOEP)," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 15(3-4), pages 155-196.
    11. Friedrich, Ulf & Münnich, Ralf & de Vries, Sven & Wagner, Matthias, 2015. "Fast integer-valued algorithms for optimal allocations under constraints in stratified sampling," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 1-12.
    12. Bonnéry Daniel & Cheng Yang & Ha Neung Soo & Lahiri Partha, 2015. "Triple-Goal Estimation of Unemployment Rates for U.S. States Using the U.S. Current Population Survey Data," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 511-522, December.
    13. Donald Boyd & Hamilton Lankford & Susanna Loeb & James Wyckoff, 2013. "Measuring Test Measurement Error," Journal of Educational and Behavioral Statistics, , vol. 38(6), pages 629-663, December.
    14. Nicholas Tibor Longford, 2016. "Decision Theory Applied to Selecting the Winners, Ranking, and Classification," Journal of Educational and Behavioral Statistics, , vol. 41(4), pages 420-442, August.
    15. Ulrich Rendtel, 2014. "Vom potenziellen Datenangreifer zum zertifizierten Wissenschaftler – Für eine Neugestaltung des Wissenschaftsprivilegs beim Datenzugang," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 8(4), pages 183-197, November.
    16. Jing Cao & S. Lynne Stokes & Song Zhang, 2010. "A Bayesian Approach to Ranking and Rater Evaluation," Journal of Educational and Behavioral Statistics, , vol. 35(2), pages 194-214, April.
    17. Ralf Münnich, 2013. "Vorwort des Herausgebers," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 7(3), pages 101-103, December.
    18. Ann-Kristin Kreutzmann, 2018. "Estimation of sample quantiles: challenges and issues in the context of income and wealth distributions [Die Schätzung von Quantilen: Herausforderungen und Probleme im Kontext von Einkommens- und V," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 12(3), pages 245-270, December.
    19. Lahiri Partha & Suntornchost Jiraphan, 2020. "A general Bayesian approach to meet different inferential goals in poverty research for small areas," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 237-253, August.
    20. Charlotte Articus & Jan Pablo Burgard, 2014. "A Finite Mixture Fay Herriot-type model for estimating regional rental prices in Germany," Research Papers in Economics 2014-14, University of Trier, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:stintr:v:16:y:2015:i:4:p:603-610:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://stat.gov.pl/en/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.