IDEAS home Printed from https://ideas.repec.org/a/spr/astaws/v14y2020i2d10.1007_s11943-020-00268-7.html
   My bibliography  Save this article

Attrition and selectivity of the NEPS starting cohorts: an overview of the past 8 years
[Ausfall und Selektivitäten in den NEPS Startkohorten: ein Überblick über die letzten 8 Jahre]

Author

Listed:
  • Sabine Zinn

    (German Institute for Economic Research (DIW)
    Leibniz Institute for Educational Trajectories (LIfBi))

  • Ariane Würbach

    (Leibniz Institute for Educational Trajectories (LIfBi))

  • Hans Walter Steinhauer

    (German Institute for Economic Research (DIW))

  • Angelina Hammon

    (German Institute for Economic Research (DIW))

Abstract

This article documents the number of target persons participating in the panel surveys of the National Educational Panel Study (NEPS) as well as the number of respondents who temporarily dropout and of those leaving the panel (attrition). NEPS comprises panel surveys with six mutually exclusive starting cohorts covering the complete life span. Sample sizes, numbers of participants and temporary as well as final dropouts and participation rates are reported in detail for each wave and for subsamples, if applicable. Sample particularities, such as the conversion of temporary dropouts into final ones, are elaborated on. All figures presented are derived from the corresponding Scientific Use Files (SUFs) published by February 1, 2018. Selectivity due to attrition (i.e., final dropouts) is studied. For this purpose, we examine how attrition distorts the NEPS samples with respect to relevant design variables (such as stratification criteria) and panel member characteristics (like sex and birth year). In detail, we study the panel status of each panel member, that is being part of the panel or having dropped out finally, along all of the panel waves with respect to starting cohort and population specific characteristics. We conclude this article with some recommendations for dealing with the detected selection bias in statistical analyses.

Suggested Citation

  • Sabine Zinn & Ariane Würbach & Hans Walter Steinhauer & Angelina Hammon, 2020. "Attrition and selectivity of the NEPS starting cohorts: an overview of the past 8 years [Ausfall und Selektivitäten in den NEPS Startkohorten: ein Überblick über die letzten 8 Jahre]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 14(2), pages 163-206, July.
  • Handle: RePEc:spr:astaws:v:14:y:2020:i:2:d:10.1007_s11943-020-00268-7
    DOI: 10.1007/s11943-020-00268-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11943-020-00268-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11943-020-00268-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hildegard Brauns & Susanne Steinmann, 1997. "Educational Reform in France, West-Germany, the United Kingdom and Hungary: Updating the CASMIN Educational Classification," MZES Working Papers 21, MZES.
    2. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    3. Hans Walter Steinhauer & Christian Aßmann & Sabine Zinn & Solange Goßmann & Susanne Rässler, 2015. "Sampling and Weighting Cohort Samples in Institutional Contexts," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 9(2), pages 131-157, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melanie Fischer-Browne, 2022. "Pushing Higher or Lower? Divergent Parental Expectations and Compromises in Occupational Choice," Social Inclusion, Cogitatio Press, vol. 10(2), pages 240-251.
    2. Sam Sims & John Jerrim, 2022. "Traditional and progressive orientations to teaching: new empirical evidence on an old debate," CEPEO Working Paper Series 22-08, UCL Centre for Education Policy and Equalising Opportunities, revised Oct 2022.
    3. Fouarge, Didier & Heß, Pascal, 2023. "Preference-choice mismatch and university dropout," Labour Economics, Elsevier, vol. 83(C).
    4. Timo Schmid & Markus Zwick, 2020. "Vorwort der Herausgeber," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 14(2), pages 117-120, July.
    5. Hawrot, Anna & Nusser, Lena, 2024. "The home environment during the COVID-19 pandemic and changes in learning enjoyment and learning effort: A study of German lower secondary school students," Children and Youth Services Review, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    2. Abhilash Bandam & Eedris Busari & Chloi Syranidou & Jochen Linssen & Detlef Stolten, 2022. "Classification of Building Types in Germany: A Data-Driven Modeling Approach," Data, MDPI, vol. 7(4), pages 1-23, April.
    3. Boonstra Philip S. & Little Roderick J.A. & West Brady T. & Andridge Rebecca R. & Alvarado-Leiton Fernanda, 2021. "A Simulation Study of Diagnostics for Selection Bias," Journal of Official Statistics, Sciendo, vol. 37(3), pages 751-769, September.
    4. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    5. Liangyuan Hu & Lihua Li, 2022. "Using Tree-Based Machine Learning for Health Studies: Literature Review and Case Series," IJERPH, MDPI, vol. 19(23), pages 1-13, December.
    6. Norah Alyabs & Sy Han Chiou, 2022. "The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection," Stats, MDPI, vol. 5(2), pages 1-13, May.
    7. Feldkircher, Martin, 2014. "The determinants of vulnerability to the global financial crisis 2008 to 2009: Credit growth and other sources of risk," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 19-49.
    8. Eunsil Seok & Akhgar Ghassabian & Yuyan Wang & Mengling Liu, 2024. "Statistical Methods for Modeling Exposure Variables Subject to Limit of Detection," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 435-458, July.
    9. Ida Kubiszewski & Kenneth Mulder & Diane Jarvis & Robert Costanza, 2022. "Toward better measurement of sustainable development and wellbeing: A small number of SDG indicators reliably predict life satisfaction," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 139-148, February.
    10. Georges Steffgen & Philipp E. Sischka & Martha Fernandez de Henestrosa, 2020. "The Quality of Work Index and the Quality of Employment Index: A Multidimensional Approach of Job Quality and Its Links to Well-Being at Work," IJERPH, MDPI, vol. 17(21), pages 1-31, October.
    11. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    12. Esef Hakan Toytok & Sungur Gürel, 2019. "Does Project Children’s University Increase Academic Self-Efficacy in 6th Graders? A Weak Experimental Design," Sustainability, MDPI, vol. 11(3), pages 1-12, February.
    13. J M van Niekerk & M C Vos & A Stein & L M A Braakman-Jansen & A F Voor in ‘t holt & J E W C van Gemert-Pijnen, 2020. "Risk factors for surgical site infections using a data-driven approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-14, October.
    14. Joost R. Ginkel, 2020. "Standardized Regression Coefficients and Newly Proposed Estimators for $${R}^{{2}}$$R2 in Multiply Imputed Data," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 185-205, March.
    15. Lara Jehi & Xinge Ji & Alex Milinovich & Serpil Erzurum & Amy Merlino & Steve Gordon & James B Young & Michael W Kattan, 2020. "Development and validation of a model for individualized prediction of hospitalization risk in 4,536 patients with COVID-19," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-15, August.
    16. Matthew Carli & Mary H. Ward & Catherine Metayer & David C. Wheeler, 2022. "Imputation of Below Detection Limit Missing Data in Chemical Mixture Analysis with Bayesian Group Index Regression," IJERPH, MDPI, vol. 19(3), pages 1-17, January.
    17. Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
    18. Tsai, Tsung-Han, 2016. "A Bayesian Approach to Dynamic Panel Models with Endogenous Rarely Changing Variables," Political Science Research and Methods, Cambridge University Press, vol. 4(3), pages 595-620, September.
    19. Henry Webel & Lili Niu & Annelaura Bach Nielsen & Marie Locard-Paulet & Matthias Mann & Lars Juhl Jensen & Simon Rasmussen, 2024. "Imputation of label-free quantitative mass spectrometry-based proteomics data using self-supervised deep learning," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Debra Javeline & Tracy Kijewski-Correa & Angela Chesler, 2019. "Does it matter if you “believe” in climate change? Not for coastal home vulnerability," Climatic Change, Springer, vol. 155(4), pages 511-532, August.

    More about this item

    Keywords

    National Educational Panel Study (NEPS); Case numbers; Selectivity; Attrition; Discrete time event history model;
    All these keywords.

    JEL classification:

    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • Y1 - Miscellaneous Categories - - Data: Tables and Charts
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:astaws:v:14:y:2020:i:2:d:10.1007_s11943-020-00268-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.