IDEAS home Printed from https://ideas.repec.org/a/spr/aqjoor/v21y2023i3d10.1007_s10288-023-00549-1.html
   My bibliography  Save this article

An introduction to variational quantum algorithms for combinatorial optimization problems

Author

Listed:
  • Camille Grange

    (University of Montpellier
    SNCF, Technology, Innovation and Group Projects Department)

  • Michael Poss

    (University of Montpellier)

  • Eric Bourreau

    (University of Montpellier)

Abstract

Noisy intermediate-scale quantum computers (NISQ computers) are now readily available, motivating many researchers to experiment with Variational Quantum Algorithms (VQAs). Among them, the Quantum Approximate Optimization Algorithm (QAOA) is one of the most popular one studied by the combinatorial optimization community. In this tutorial, we provide a mathematical description of the class of Variational Quantum Algorithms, assuming no previous knowledge of quantum physics from the readers. We introduce precisely the key aspects of these hybrid algorithms on the quantum side (parametrized quantum circuit) and the classical side (guiding function, optimizer). We devote a particular attention to QAOA, detailing the quantum circuits involved in that algorithm, as well as the properties satisfied by its possible guiding functions. Finally, we discuss the recent literature on QAOA, highlighting several research trends.

Suggested Citation

  • Camille Grange & Michael Poss & Eric Bourreau, 2023. "An introduction to variational quantum algorithms for combinatorial optimization problems," 4OR, Springer, vol. 21(3), pages 363-403, September.
  • Handle: RePEc:spr:aqjoor:v:21:y:2023:i:3:d:10.1007_s10288-023-00549-1
    DOI: 10.1007/s10288-023-00549-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10288-023-00549-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10288-023-00549-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fred Glover & Gary Kochenberger & Yu Du, 2019. "Quantum Bridge Analytics I: a tutorial on formulating and using QUBO models," 4OR, Springer, vol. 17(4), pages 335-371, December.
    2. Alberto Peruzzo & Jarrod McClean & Peter Shadbolt & Man-Hong Yung & Xiao-Qi Zhou & Peter J. Love & Alán Aspuru-Guzik & Jeremy L. O’Brien, 2014. "A variational eigenvalue solver on a photonic quantum processor," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    3. Kurowski, Krzysztof & Pecyna, Tomasz & Slysz, Mateusz & Różycki, Rafał & Waligóra, Grzegorz & Wȩglarz, Jan, 2023. "Application of quantum approximate optimization algorithm to job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 310(2), pages 518-528.
    4. Jarrod R. McClean & Sergio Boixo & Vadim N. Smelyanskiy & Ryan Babbush & Hartmut Neven, 2018. "Barren plateaus in quantum neural network training landscapes," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajagekar, Akshay & You, Fengqi, 2022. "Quantum computing and quantum artificial intelligence for renewable and sustainable energy: A emerging prospect towards climate neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. Eric R. Anschuetz & Bobak T. Kiani, 2022. "Quantum variational algorithms are swamped with traps," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Enrico Fontana & Dylan Herman & Shouvanik Chakrabarti & Niraj Kumar & Romina Yalovetzky & Jamie Heredge & Shree Hari Sureshbabu & Marco Pistoia, 2024. "Characterizing barren plateaus in quantum ansätze with the adjoint representation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Michael Ragone & Bojko N. Bakalov & Frédéric Sauvage & Alexander F. Kemper & Carlos Ortiz Marrero & Martín Larocca & M. Cerezo, 2024. "A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. He, Zhimin & Deng, Maijie & Zheng, Shenggen & Li, Lvzhou & Situ, Haozhen, 2023. "GSQAS: Graph Self-supervised Quantum Architecture Search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    6. Zhao, Xiumei & Li, Yongmei & Li, Jing & Wang, Shasha & Wang, Song & Qin, Sujuan & Gao, Fei, 2024. "Near-term quantum algorithm for solving the MaxCut problem with fewer quantum resources," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 648(C).
    7. Sofiene Jerbi & Lukas J. Fiderer & Hendrik Poulsen Nautrup & Jonas M. Kübler & Hans J. Briegel & Vedran Dunjko, 2023. "Quantum machine learning beyond kernel methods," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Alexander Gresch & Martin Kliesch, 2025. "Guaranteed efficient energy estimation of quantum many-body Hamiltonians using ShadowGrouping," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    9. Manuel S. Rudolph & Jacob Miller & Danial Motlagh & Jing Chen & Atithi Acharya & Alejandro Perdomo-Ortiz, 2023. "Synergistic pretraining of parametrized quantum circuits via tensor networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Bingzhi Zhang & Junyu Liu & Xiao-Chuan Wu & Liang Jiang & Quntao Zhuang, 2024. "Dynamical transition in controllable quantum neural networks with large depth," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Samson Wang & Enrico Fontana & M. Cerezo & Kunal Sharma & Akira Sone & Lukasz Cincio & Patrick J. Coles, 2021. "Noise-induced barren plateaus in variational quantum algorithms," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    12. Byron Tasseff & Tameem Albash & Zachary Morrell & Marc Vuffray & Andrey Y. Lokhov & Sidhant Misra & Carleton Coffrin, 2024. "On the emerging potential of quantum annealing hardware for combinatorial optimization," Journal of Heuristics, Springer, vol. 30(5), pages 325-358, December.
    13. Takayuki Sakuma, 2020. "Application of deep quantum neural networks to finance," Papers 2011.07319, arXiv.org, revised May 2022.
    14. Yves Crama & Michel Grabisch & Silvano Martello, 2022. "Preface," Annals of Operations Research, Springer, vol. 314(1), pages 1-3, July.
    15. Iris Cong & Nishad Maskara & Minh C. Tran & Hannes Pichler & Giulia Semeghini & Susanne F. Yelin & Soonwon Choi & Mikhail D. Lukin, 2024. "Enhancing detection of topological order by local error correction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Alen Senanian & Sridhar Prabhu & Vladimir Kremenetski & Saswata Roy & Yingkang Cao & Jeremy Kline & Tatsuhiro Onodera & Logan G. Wright & Xiaodi Wu & Valla Fatemi & Peter L. McMahon, 2024. "Microwave signal processing using an analog quantum reservoir computer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Aritra Sarkar & Zaid Al-Ars & Koen Bertels, 2021. "QuASeR: Quantum Accelerated de novo DNA sequence reconstruction," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-23, April.
    18. Yves Crama & Michel Grabisch & Silvano Martello, 2021. "4OR comes of age," 4OR, Springer, vol. 19(1), pages 1-13, March.
    19. Fred Glover & Gary Kochenberger & Rick Hennig & Yu Du, 2022. "Quantum bridge analytics I: a tutorial on formulating and using QUBO models," Annals of Operations Research, Springer, vol. 314(1), pages 141-183, July.
    20. Wei-Ming Li & Shi-Ju Ran, 2022. "Non-Parametric Semi-Supervised Learning in Many-Body Hilbert Space with Rescaled Logarithmic Fidelity," Mathematics, MDPI, vol. 10(6), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aqjoor:v:21:y:2023:i:3:d:10.1007_s10288-023-00549-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.