IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v648y2024ics0378437124004606.html
   My bibliography  Save this article

Near-term quantum algorithm for solving the MaxCut problem with fewer quantum resources

Author

Listed:
  • Zhao, Xiumei
  • Li, Yongmei
  • Li, Jing
  • Wang, Shasha
  • Wang, Song
  • Qin, Sujuan
  • Gao, Fei

Abstract

MaxCut is an NP-hard combinatorial optimization problem in graph theory. The quantum approximate optimization algorithms (QAOAs) offer new methods for solving such problems, which are potentially better than classical schemes. However, the requirement of N qubits for solving graphs with N-vertex in QAOA, coupled with the large-N trainability issue due to barren plateaus, poses a substantial challenge for noisy intermediate-scale quantum (NISQ) devices. Recently, a hybrid quantum–classical algorithm has been proposed for solving semidefinite programs (SDPs), named NISQ SDP Solver (NSS). In this paper, we study the performance of the NSS for solving MaxCut problem via the introduction of a near-term quantum algorithm and execution of experimental simulations. Since the MaxCut problem admits a relaxation into an SDP formulation, the SDP can be solved using NSS, with a subsequent classical post-processing step converting the hybrid density matrix into a MaxCut solution. After performing these steps, the near-term quantum algorithm will also inherit the advantages of NSS. We analyze the algorithm as compared to QAOAs and find that the depth of the quantum circuit is independent of the number of edges on the graph. Our algorithm requires logN qubits and has O(1) circuit depth. This implies that it uses exponentially fewer qubits compared to QAOAs while also requiring a significantly reduced circuit depth to solve the MaxCut problem. To demonstrate the effectiveness of the NSS, we focused on 3-regular graphs, 9-regular graphs, and ER graphs. Numerical results indicate that the quantum algorithm achieves a comparable approximation ratio with classical methods by solving the original high dimensional problem within a lower dimensional ansatz space. Analysis under various initial states shows that the algorithm exhibits a remarkably stable performance.

Suggested Citation

  • Zhao, Xiumei & Li, Yongmei & Li, Jing & Wang, Shasha & Wang, Song & Qin, Sujuan & Gao, Fei, 2024. "Near-term quantum algorithm for solving the MaxCut problem with fewer quantum resources," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 648(C).
  • Handle: RePEc:eee:phsmap:v:648:y:2024:i:c:s0378437124004606
    DOI: 10.1016/j.physa.2024.129951
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124004606
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:648:y:2024:i:c:s0378437124004606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.