IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v310y2023i2p518-528.html
   My bibliography  Save this article

Application of quantum approximate optimization algorithm to job shop scheduling problem

Author

Listed:
  • Kurowski, Krzysztof
  • Pecyna, Tomasz
  • Slysz, Mateusz
  • Różycki, Rafał
  • Waligóra, Grzegorz
  • Wȩglarz, Jan

Abstract

The Job Shop Scheduling Problem (JSSP) has always been considered as one of the most complex and industry essential scheduling problems. Optimizing the makespan of a given schedule generally involves using dedicated algorithms, local search strategies, or metaheuristics. These approaches, however, heavily rely on classical computational power, which is bounded by the physical limits of microcontrollers and power issues. Inspired by the promising results achieved for Quantum Annealing (QA) based approaches to solve JSSP instances, we propose a new approach that uses gate-model quantum architecture as an alternative to QA. We find that we can make use of the time-indexed JSSP instance representation to build a cost Hamiltonian, which can be embedded into Quantum Approximate Optimization Algorithm (QAOA) to find an optimal solution to a basic JSSP instance. We demonstrate the use of QAOA to solve the JSSP, and we evaluate its efficiency and accuracy for this problem from experimental results, as there is an increased urgency to demonstrate the applicability of quantum optimization algorithms. We also find that optimal variational parameters form patterns that can facilitate computation in bigger quantum circuits. Additionally, we compare the obtained noiseless simulation results of gate-model quantum circuits demonstrating the relationship between two evaluation criteria - makespan and energy. Finally, we analyze and present the overall performance of our approach with the increasing deadline and simulated depth of QAOA circuits.

Suggested Citation

  • Kurowski, Krzysztof & Pecyna, Tomasz & Slysz, Mateusz & Różycki, Rafał & Waligóra, Grzegorz & Wȩglarz, Jan, 2023. "Application of quantum approximate optimization algorithm to job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 310(2), pages 518-528.
  • Handle: RePEc:eee:ejores:v:310:y:2023:i:2:p:518-528
    DOI: 10.1016/j.ejor.2023.03.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723002072
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.03.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blazewicz, Jacek & Pesch, Erwin & Sterna, Malgorzata, 2000. "The disjunctive graph machine representation of the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 127(2), pages 317-331, December.
    2. Jelke J. Hoorn, 2018. "The Current state of bounds on benchmark instances of the job-shop scheduling problem," Journal of Scheduling, Springer, vol. 21(1), pages 127-128, February.
    3. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    4. Ulrich Dorndorf & Erwin Pesch & Toàn Phan-Huy, 2002. "Constraint Propagation and Problem Decomposition: A Preprocessing Procedure for the Job Shop Problem," Annals of Operations Research, Springer, vol. 115(1), pages 125-145, September.
    5. R. J. M. Vaessens & E. H. L. Aarts & J. K. Lenstra, 1996. "Job Shop Scheduling by Local Search," INFORMS Journal on Computing, INFORMS, vol. 8(3), pages 302-317, August.
    6. Sergio Boixo & Tameem Albash & Federico M. Spedalieri & Nicholas Chancellor & Daniel A. Lidar, 2013. "Experimental signature of programmable quantum annealing," Nature Communications, Nature, vol. 4(1), pages 1-8, October.
    7. Samson Wang & Enrico Fontana & M. Cerezo & Kunal Sharma & Akira Sone & Lukasz Cincio & Patrick J. Coles, 2021. "Noise-induced barren plateaus in variational quantum algorithms," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. Egon Balas & Alkis Vazacopoulos, 1998. "Guided Local Search with Shifting Bottleneck for Job Shop Scheduling," Management Science, INFORMS, vol. 44(2), pages 262-275, February.
    9. Carlier, J. & Pinson, E., 1994. "Adjustment of heads and tails for the job-shop problem," European Journal of Operational Research, Elsevier, vol. 78(2), pages 146-161, October.
    10. Joseph Adams & Egon Balas & Daniel Zawack, 1988. "The Shifting Bottleneck Procedure for Job Shop Scheduling," Management Science, INFORMS, vol. 34(3), pages 391-401, March.
    11. Pezzella, Ferdinando & Merelli, Emanuela, 2000. "A tabu search method guided by shifting bottleneck for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 120(2), pages 297-310, January.
    12. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    13. Christian Artigues & Pierre Lopez & Pierre-Dimitri Ayache, 2005. "Schedule Generation Schemes for the Job-Shop Problem with Sequence-Dependent Setup Times: Dominance Properties and Computational Analysis," Annals of Operations Research, Springer, vol. 138(1), pages 21-52, September.
    14. Blazewicz, Jacek & Dror, Moshe & Weglarz, Jan, 1991. "Mathematical programming formulations for machine scheduling: A survey," European Journal of Operational Research, Elsevier, vol. 51(3), pages 283-300, April.
    15. Brucker, Peter & Jurisch, Bernd, 1993. "A new lower bound for the job-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 64(2), pages 156-167, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camille Grange & Michael Poss & Eric Bourreau, 2023. "An introduction to variational quantum algorithms for combinatorial optimization problems," 4OR, Springer, vol. 21(3), pages 363-403, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    2. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    3. Giuseppe Lancia & Franca Rinaldi & Paolo Serafini, 2011. "A time-indexed LP-based approach for min-sum job-shop problems," Annals of Operations Research, Springer, vol. 186(1), pages 175-198, June.
    4. Christian Artigues & Dominique Feillet, 2008. "A branch and bound method for the job-shop problem with sequence-dependent setup times," Annals of Operations Research, Springer, vol. 159(1), pages 135-159, March.
    5. Bürgy, Reinhard & Bülbül, Kerem, 2018. "The job shop scheduling problem with convex costs," European Journal of Operational Research, Elsevier, vol. 268(1), pages 82-100.
    6. Christoph Schuster, 2006. "No-wait Job Shop Scheduling: Tabu Search and Complexity of Subproblems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(3), pages 473-491, July.
    7. F. Guerriero, 2008. "Hybrid Rollout Approaches for the Job Shop Scheduling Problem," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 419-438, November.
    8. Francis Sourd & Wim Nuijten, 2000. "Multiple-Machine Lower Bounds for Shop-Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 12(4), pages 341-352, November.
    9. Murovec, Bostjan & Suhel, Peter, 2004. "A repairing technique for the local search of the job-shop problem," European Journal of Operational Research, Elsevier, vol. 153(1), pages 220-238, February.
    10. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    11. Da Col, Giacomo & Teppan, Erich C., 2022. "Industrial-size job shop scheduling with constraint programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    12. Murovec, Boštjan, 2015. "Job-shop local-search move evaluation without direct consideration of the criterion’s value," European Journal of Operational Research, Elsevier, vol. 241(2), pages 320-329.
    13. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.
    14. Varela, Ramiro & Vela, Camino R. & Puente, Jorge & Gomez, Alberto, 2003. "A knowledge-based evolutionary strategy for scheduling problems with bottlenecks," European Journal of Operational Research, Elsevier, vol. 145(1), pages 57-71, February.
    15. El-Bouri, A. & Azizi, N. & Zolfaghari, S., 2007. "A comparative study of a new heuristic based on adaptive memory programming and simulated annealing: The case of job shop scheduling," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1894-1910, March.
    16. Pisut Pongchairerks, 2019. "A Two-Level Metaheuristic Algorithm for the Job-Shop Scheduling Problem," Complexity, Hindawi, vol. 2019, pages 1-11, March.
    17. Tarantilis, C. D. & Kiranoudis, C. T., 2002. "A list-based threshold accepting method for job shop scheduling problems," International Journal of Production Economics, Elsevier, vol. 77(2), pages 159-171, May.
    18. Müller, David & Müller, Marcus G. & Kress, Dominik & Pesch, Erwin, 2022. "An algorithm selection approach for the flexible job shop scheduling problem: Choosing constraint programming solvers through machine learning," European Journal of Operational Research, Elsevier, vol. 302(3), pages 874-891.
    19. Carlos Mencía & María Sierra & Ramiro Varela, 2013. "Depth-first heuristic search for the job shop scheduling problem," Annals of Operations Research, Springer, vol. 206(1), pages 265-296, July.
    20. Rossi, Andrea, 2014. "Flexible job shop scheduling with sequence-dependent setup and transportation times by ant colony with reinforced pheromone relationships," International Journal of Production Economics, Elsevier, vol. 153(C), pages 253-267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:310:y:2023:i:2:p:518-528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.