IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v9y2022i3d10.1007_s40745-021-00368-3.html
   My bibliography  Save this article

Research on Uncertainty of System Function State from Factors-Data-Cognition

Author

Listed:
  • Tiejun Cui

    (Liaoning Technical University)

  • Peizhuang Wang

    (Liaoning Technical University)

  • Shasha Li

    (Liaoning Technical University)

Abstract

In the process of system operation, the ability to complete the predetermined function is changing, which is uncertain for the system designer. In order to study the uncertainty of system function state, the causes of uncertainty are analyzed with the help of system fault evolution process and space fault network theory, and the methods to deal with and express uncertainty are studied. Firstly, human, man-made system and natural system are defined; Secondly, the four elements of evolution structure are obtained through space fault network; the causes of uncertainty are factor, data and cognition; the method to deal with uncertainty is analyzed by using four factors; finally, a method to represent the uncertainty of system function state is proposed. According to the research, man-made system is a system established by man according to his subjective cognition, which can complete the predetermined function, that is, man's cognition determines man-made system. Due to the loss of factor flow and data flow in the transmission process, people's cognition of natural system is limited. There must be differences between man-made system and natural system, which is the uncertainty of system function state.

Suggested Citation

  • Tiejun Cui & Peizhuang Wang & Shasha Li, 2022. "Research on Uncertainty of System Function State from Factors-Data-Cognition," Annals of Data Science, Springer, vol. 9(3), pages 593-609, June.
  • Handle: RePEc:spr:aodasc:v:9:y:2022:i:3:d:10.1007_s40745-021-00368-3
    DOI: 10.1007/s40745-021-00368-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-021-00368-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-021-00368-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    2. Peizhuang Wang & He Ouyang & Yixin Zhong & Huacan He, 2016. "Cognition Math Based on Factor Space," Annals of Data Science, Springer, vol. 3(3), pages 281-303, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueyan Xu & Fusheng Yu & Runjun Wan, 2023. "A Determining Degree-Based Method for Classification Problems with Interval-Valued Attributes," Annals of Data Science, Springer, vol. 10(2), pages 393-413, April.
    2. Anda Tang & Pei Quan & Lingfeng Niu & Yong Shi, 2022. "A Survey for Sparse Regularization Based Compression Methods," Annals of Data Science, Springer, vol. 9(4), pages 695-722, August.
    3. Xingsen Li & Junlin Zeng & Haitao Liu & Peizhuang Wang, 2022. "Intelligent Problem Solving Model and its Cross Research Directions Based on Factor Space and Extenics," Annals of Data Science, Springer, vol. 9(3), pages 469-484, June.
    4. Hui Sun & Fanhui Zeng & Yang Yang, 2022. "Covert Factor’s Exploiting and Factor Planning," Annals of Data Science, Springer, vol. 9(3), pages 449-467, June.
    5. Binxiang Jiang, 2022. "Research on Factor Space Engineering and Application of Evidence Factor Mining in Evidence-based Reconstruction," Annals of Data Science, Springer, vol. 9(3), pages 503-537, June.
    6. Yundong Gu & Dongfen Ma & Jiawei Cui & Zhenhua Li & Yaqi Chen, 2022. "Variable-Weighted Ensemble Forecasting of Short-Term Power Load Based on Factor Space Theory," Annals of Data Science, Springer, vol. 9(3), pages 485-501, June.
    7. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    8. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    9. Mansoureh Beheshti Nejad & Seyed Mahmoud Zanjirchi & Seyed Mojtaba Hosseini Bamakan & Negar Jalilian, 2024. "Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research," Annals of Data Science, Springer, vol. 11(4), pages 1361-1389, August.
    10. M. Sridharan, 2023. "Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters," Annals of Data Science, Springer, vol. 10(4), pages 1107-1125, August.
    11. Amaal Elsayed Mubarak & Ehab Mohamed Almetwally, 2024. "Modelling and Forecasting of Covid-19 Using Periodical ARIMA Models," Annals of Data Science, Springer, vol. 11(4), pages 1483-1502, August.
    12. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    13. Prashant Singh & Prashant Verma & Nikhil Singh, 2022. "Offline Signature Verification: An Application of GLCM Features in Machine Learning," Annals of Data Science, Springer, vol. 9(6), pages 1309-1321, December.
    14. Shah Hussain & Muhammad Qasim Khan, 2023. "Student-Performulator: Predicting Students’ Academic Performance at Secondary and Intermediate Level Using Machine Learning," Annals of Data Science, Springer, vol. 10(3), pages 637-655, June.
    15. A. R. Sherwani & Q. M. Ali, 2023. "Parametric Classification using Fuzzy Approach for Handling the Problem of Mixed Pixels in Ground Truth Data for a Satellite Image," Annals of Data Science, Springer, vol. 10(6), pages 1459-1472, December.
    16. Hui Zheng & Peng LI & Jing HE, 2022. "A Novel Association Rule Mining Method for Streaming Temporal Data," Annals of Data Science, Springer, vol. 9(4), pages 863-883, August.
    17. Rakhal Das & Anjan Mukherjee & Binod Chandra Tripathy, 2022. "Application of Neutrosophic Similarity Measures in Covid-19," Annals of Data Science, Springer, vol. 9(1), pages 55-70, February.
    18. Desmond Chekwube Bartholomew & Chrysogonus Chinagorom Nwaigwe & Ukamaka Cynthia Orumie & Godwin Onyeka Nwafor, 2024. "Intervention Analysis of COVID-19 Vaccination in Nigeria: The Naive Solution Versus Interrupted Time Series," Annals of Data Science, Springer, vol. 11(5), pages 1609-1634, October.
    19. Muhammad Tahir & Sufyan Ali & Ayesha Sohail & Ying Zhang & Xiaohua Jin, 2024. "Unlocking Online Insights: LSTM Exploration and Transfer Learning Prospects," Annals of Data Science, Springer, vol. 11(4), pages 1421-1434, August.
    20. Junjie Hou & Yuqi Zhang & Duo Su, 2024. "Unified Image Harmonization with Region Augmented Attention Normalization," Annals of Data Science, Springer, vol. 11(5), pages 1865-1886, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:9:y:2022:i:3:d:10.1007_s40745-021-00368-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.